当前位置: 首页 > news >正文

【hive】hive中row_number() rank() dense_rank()的用法

hive中row_number() rank() dense_rank()的用法

一、函数说明

主要是配合over()窗口函数来使用的,通过over(partition by order by )来反映统计值的记录。

  1. rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)
  2. dense_rank() over()是连续排序,有两个第二名时仍然跟着第三名。相比之下  row_number是没有重复值的
  3. row_number() 会根据顺序计算,仅仅是加了序号

二、应用场景

可以用于学生成绩排名

row_number()按照值排序时产生一个自增编号,不会重复(如:1、2、3、4、5、6)

rank() 按照值排序时产生一个自增编号,值相等时会重复,会产生空位(如:1、2、3、3、3、6)dense_rank() 按照值排序时产生一个自增编号,值相等时会重复,不会产生空位(如:1、2、3、3、3、4)


下面开始学习这几个函数:

  1. 准备数据:

字段名为:name、orderdate、cost

Jack,2017-01-01,10
Tony,2017-01-02,15
Jack,2017-02-03,23
Tony,2017-01-04,29
Jack,2017-01-05,46
Jack,2017-04-06,42
Tony,2017-01-07,50
Jack,2017-01-08,55
Mark,2017-04-08,62
Mart,2017-04-09,68
Meil,2017-05-10,12
Mart,2017-04-11,75
Meil,2017-06-12,80
Mart,2017-04-13,94
  1. 创建表:
create table business(
name string,
orderdate string,
cost int)
row format delimited
fields terminated by ",";
  1. 加载数据:
load data local inpath "/root/business.txt" into table business;

1、row_number() over()排序功能:

在使用 row_number() over()函数时候,over()里头的分组以及排序的执行晚于 where group by order by 的执行。

partition by 用于给结果集分组,如果没有指定那么它把整个结果集作为一个分组,它和聚合函数不同的地方在于它能够返回一个分组中的多条记录,而聚合函数一般只有一个反映统计值的记录。

例子:按月份来查询,根据cost来降序排序:

select *,row_number() over(partition by substr(orderdate,1,7) order by cost desc) as num
from business;

img

2、rank() over()

rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)

为了演示效果,我们再把txt文件导入hive中,相当于hive表中有2份相同的数据

导入数据:

load data local inpath "/root/business.txt" into table business;

例子:按名字分组,并按照金额进行排序,给出编号

select *,rank() over(partition by name order by cost desc) as num from business;

img

3、dense_rank() over()

dense_rank() over()是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的

还是上面那个例子:按名字分组,按金额降序排序,给出序号

select *,dense_rank() over(partition by name order by cost desc) as num from business;

img

相关文章:

【hive】hive中row_number() rank() dense_rank()的用法

hive中row_number() rank() dense_rank()的用法 一、函数说明 主要是配合over()窗口函数来使用的,通过over(partition by order by )来反映统计值的记录。 rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)dense_rank() …...

【云原生】【k8s】Kubernetes+EFK构建日志分析安装部署

目录 EFK安装部署 一、环境准备(所有主机) 1、主机初始化配置 2、配置主机名并绑定hosts,不同主机名称不同 3、主机配置初始化 4、部署docker环境 二、部署kubernetes集群 1、组件介绍 2、配置阿里云yum源 3、安装kubelet kubeadm …...

计算实数数组中所有元素的绝对值 numpy.fabs()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 计算实数数组中所有元素的绝对值 numpy.fabs() [太阳]选择题 请问关于以下代码表述错误的是? iimport numpy as np a np.array([-1,-3]) b np.array([-1,34j]) print("【显…...

深入浅出Pytorch函数——torch.nn.init.orthogonal_

分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

ORACLE中UNION、UNION ALL、MINUS、INTERSECT学习

1、UNION和UNION ALL的使用与区别 如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字。union的作用是将多个结果合并在一起显示出来。 union和union all的区别是union会自动压缩多个结果集合中的重复结果&#xff…...

【k8s、云原生】基于metrics-server弹性伸缩

第四阶段 时 间:2023年8月18日 参加人:全班人员 内 容: 基于metrics-server弹性伸缩 目录 一、Kubernetes部署方式 (一)minikube (二)二进制包 (三)Kubeadm 二…...

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程…...

VSCode快捷键

CtrlShiftP,F1:显示命令面板 CtrlP:快速打开 CtrlShiftN:新窗口/实例 CtrlShiftW:关闭窗口/实例 CtrlX:剪切行 CtrlC:复制行 ALT↑/↓:上下移动 ShiftAlt↓/↑:向…...

贪心算法求数组中能组成三角形的最大周长

题目:三角形的最大周长 给定由一些正数(代表长度)组成的数组arr,返回由其中三个长度组成的、面积不为零的三角形的最大周长。 如果不能形成任何面积不为零的三角形,返回0。 分析: 对数组排序,再从大到小选择三个数,再…...

VMWare Workstation 17 Pro 网络设置 桥接模式 网络地址转换(NAT)模式 仅主机模式

文章目录 网络模式配网要求CentOSDHCP虚拟网络桥接模式默认配置测试手动配置测试 网络地址转发模式 (NAT)还原配置虚拟网络配置默认配置测试手动配置测试 仅主机模式 网络模式 桥接模式: 主机与虚拟机对等, 虚拟机注册到主机所在的局域网, 会占用该网络的IP该局域网内的所有机…...

拒绝摆烂!C语言练习打卡第四天

🔥博客主页:小王又困了 📚系列专栏:每日一练 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、选择题 📝1.第一题 📝2.第二题 &#x1f4d…...

KubeSphere 社区双周报 | Java functions framework 支持 SkyWalking | 2023.8.4-8.17

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为:2023.08.04-2023.…...

【学习笔记之java】使用RestTemplate调用第三方接口

1.首先需要导入依赖 <!-- RestTemplate使用导入的依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version></dependency>2.跟启动类同级创建…...

数据集成革新:去中心化微服务集群的无限潜能

在当今数据密集型的业务环境下&#xff0c;传统的集中式架构已经难以满足高可用性和高并发性的要求。而去中心化微服务集群则通过分散式的架构&#xff0c;将系统划分为多个小型的、独立部署的微服务单元&#xff0c;每个微服务负责特定的业务功能&#xff0c;实现了系统的高度…...

后端返回可下载的xlsx文件,但是前端接收下载后为乱码

我的接收数据进行处理的代码为&#xff1a; download_signal_list() {return new Promise((resolve, reject) > {get_download_signal({project_id: this.projectId,version_id: this.versionId}).then(response > {const url window.URL.createObjectURL(new Blob([res…...

提升资源管理效率必备工具推荐

一、数据传输 1、Textify&#xff08;PC&#xff09; 作为一名技术人员&#xff0c;需要经常研究各种技术&#xff0c;因此&#xff0c;复制粘贴的操作十分常见。 Textify可以快速复制各种控件中的文本&#xff0c;包括浏览器中当前页面的标题、聊天窗口中各个部分的文字、桌…...

HJ23 删除字符串中出现次数最少的字符

描述 实现删除字符串中出现次数最少的字符&#xff0c;若出现次数最少的字符有多个&#xff0c;则把出现次数最少的字符都删除。输出删除这些单词后的字符串&#xff0c;字符串中其它字符保持原来的顺序。 数据范围&#xff1a;输入的字符串长度满足 1≤n≤20 1≤n≤20 &…...

文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题

一、如果用go语言&#xff0c;为什么我们分析随机化算法的期望运行时间&#xff0c;而不是其最坏运行时间呢? 文心一言&#xff1a; 在分析算法的性能时&#xff0c;期望运行时间是一个重要的指标&#xff0c;它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…...

Leetcode - 滑动窗口

文章目录 1. 滑动窗口2. 举例2.1 无重复字符的最长子串2.2 长度最小的子数组2.3 滑动窗口最大值2.4 最小覆盖子串2.5 删除有序数组中的重复项 1. 滑动窗口 滑动窗口的大概思想如下&#xff1a; 可以通过两个指针来标识窗口的边界。窗口的长度是可以固定的&#xff0c;也可以是…...

如何保证数据传输的安全?

要确保数据传输的安全&#xff0c;您可以采取以下措施&#xff1a; 使用加密协议&#xff1a;使用安全的传输协议&#xff0c;如HTTPS(HTTP over SSL/TLS)或其他安全协议&#xff0c;以保护数据在传输过程中的安全性。加密协议可以有效防止数据被窃听或篡改。 强化身份验证&…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...