【hive】hive中row_number() rank() dense_rank()的用法
hive中row_number() rank() dense_rank()的用法
一、函数说明
主要是配合over()窗口函数来使用的,通过over(partition by order by )来反映统计值的记录。
- rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)
- dense_rank() over()是连续排序,有两个第二名时仍然跟着第三名。相比之下 row_number是没有重复值的
- row_number() 会根据顺序计算,仅仅是加了序号
二、应用场景
可以用于学生成绩排名
row_number()按照值排序时产生一个自增编号,不会重复(如:1、2、3、4、5、6)
rank() 按照值排序时产生一个自增编号,值相等时会重复,会产生空位(如:1、2、3、3、3、6)dense_rank() 按照值排序时产生一个自增编号,值相等时会重复,不会产生空位(如:1、2、3、3、3、4)
下面开始学习这几个函数:
- 准备数据:
字段名为:name、orderdate、cost
Jack,2017-01-01,10
Tony,2017-01-02,15
Jack,2017-02-03,23
Tony,2017-01-04,29
Jack,2017-01-05,46
Jack,2017-04-06,42
Tony,2017-01-07,50
Jack,2017-01-08,55
Mark,2017-04-08,62
Mart,2017-04-09,68
Meil,2017-05-10,12
Mart,2017-04-11,75
Meil,2017-06-12,80
Mart,2017-04-13,94
- 创建表:
create table business(
name string,
orderdate string,
cost int)
row format delimited
fields terminated by ",";
- 加载数据:
load data local inpath "/root/business.txt" into table business;
1、row_number() over()排序功能:
在使用 row_number() over()函数时候,over()里头的分组以及排序的执行晚于 where group by order by 的执行。
partition by 用于给结果集分组,如果没有指定那么它把整个结果集作为一个分组,它和聚合函数不同的地方在于它能够返回一个分组中的多条记录,而聚合函数一般只有一个反映统计值的记录。
例子:按月份来查询,根据cost来降序排序:
select *,row_number() over(partition by substr(orderdate,1,7) order by cost desc) as num
from business;

2、rank() over()
rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)
为了演示效果,我们再把txt文件导入hive中,相当于hive表中有2份相同的数据
导入数据:
load data local inpath "/root/business.txt" into table business;
例子:按名字分组,并按照金额进行排序,给出编号
select *,rank() over(partition by name order by cost desc) as num from business;

3、dense_rank() over()
dense_rank() over()是连续排序,有两个第二名时仍然跟着第三名。相比之下row_number是没有重复值的
还是上面那个例子:按名字分组,按金额降序排序,给出序号
select *,dense_rank() over(partition by name order by cost desc) as num from business;

相关文章:
【hive】hive中row_number() rank() dense_rank()的用法
hive中row_number() rank() dense_rank()的用法 一、函数说明 主要是配合over()窗口函数来使用的,通过over(partition by order by )来反映统计值的记录。 rank() over()是跳跃排序,有两个第二名时接下来就是第四名(同样是在各个分组内)dense_rank() …...
【云原生】【k8s】Kubernetes+EFK构建日志分析安装部署
目录 EFK安装部署 一、环境准备(所有主机) 1、主机初始化配置 2、配置主机名并绑定hosts,不同主机名称不同 3、主机配置初始化 4、部署docker环境 二、部署kubernetes集群 1、组件介绍 2、配置阿里云yum源 3、安装kubelet kubeadm …...
计算实数数组中所有元素的绝对值 numpy.fabs()
【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 计算实数数组中所有元素的绝对值 numpy.fabs() [太阳]选择题 请问关于以下代码表述错误的是? iimport numpy as np a np.array([-1,-3]) b np.array([-1,34j]) print("【显…...
深入浅出Pytorch函数——torch.nn.init.orthogonal_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
ORACLE中UNION、UNION ALL、MINUS、INTERSECT学习
1、UNION和UNION ALL的使用与区别 如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字。union的作用是将多个结果合并在一起显示出来。 union和union all的区别是union会自动压缩多个结果集合中的重复结果ÿ…...
【k8s、云原生】基于metrics-server弹性伸缩
第四阶段 时 间:2023年8月18日 参加人:全班人员 内 容: 基于metrics-server弹性伸缩 目录 一、Kubernetes部署方式 (一)minikube (二)二进制包 (三)Kubeadm 二…...
回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程…...
VSCode快捷键
CtrlShiftP,F1:显示命令面板 CtrlP:快速打开 CtrlShiftN:新窗口/实例 CtrlShiftW:关闭窗口/实例 CtrlX:剪切行 CtrlC:复制行 ALT↑/↓:上下移动 ShiftAlt↓/↑:向…...
贪心算法求数组中能组成三角形的最大周长
题目:三角形的最大周长 给定由一些正数(代表长度)组成的数组arr,返回由其中三个长度组成的、面积不为零的三角形的最大周长。 如果不能形成任何面积不为零的三角形,返回0。 分析: 对数组排序,再从大到小选择三个数,再…...
VMWare Workstation 17 Pro 网络设置 桥接模式 网络地址转换(NAT)模式 仅主机模式
文章目录 网络模式配网要求CentOSDHCP虚拟网络桥接模式默认配置测试手动配置测试 网络地址转发模式 (NAT)还原配置虚拟网络配置默认配置测试手动配置测试 仅主机模式 网络模式 桥接模式: 主机与虚拟机对等, 虚拟机注册到主机所在的局域网, 会占用该网络的IP该局域网内的所有机…...
拒绝摆烂!C语言练习打卡第四天
🔥博客主页:小王又困了 📚系列专栏:每日一练 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、选择题 📝1.第一题 📝2.第二题 Ὅ…...
KubeSphere 社区双周报 | Java functions framework 支持 SkyWalking | 2023.8.4-8.17
KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为:2023.08.04-2023.…...
【学习笔记之java】使用RestTemplate调用第三方接口
1.首先需要导入依赖 <!-- RestTemplate使用导入的依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version></dependency>2.跟启动类同级创建…...
数据集成革新:去中心化微服务集群的无限潜能
在当今数据密集型的业务环境下,传统的集中式架构已经难以满足高可用性和高并发性的要求。而去中心化微服务集群则通过分散式的架构,将系统划分为多个小型的、独立部署的微服务单元,每个微服务负责特定的业务功能,实现了系统的高度…...
后端返回可下载的xlsx文件,但是前端接收下载后为乱码
我的接收数据进行处理的代码为: download_signal_list() {return new Promise((resolve, reject) > {get_download_signal({project_id: this.projectId,version_id: this.versionId}).then(response > {const url window.URL.createObjectURL(new Blob([res…...
提升资源管理效率必备工具推荐
一、数据传输 1、Textify(PC) 作为一名技术人员,需要经常研究各种技术,因此,复制粘贴的操作十分常见。 Textify可以快速复制各种控件中的文本,包括浏览器中当前页面的标题、聊天窗口中各个部分的文字、桌…...
HJ23 删除字符串中出现次数最少的字符
描述 实现删除字符串中出现次数最少的字符,若出现次数最少的字符有多个,则把出现次数最少的字符都删除。输出删除这些单词后的字符串,字符串中其它字符保持原来的顺序。 数据范围:输入的字符串长度满足 1≤n≤20 1≤n≤20 &…...
文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题
一、如果用go语言,为什么我们分析随机化算法的期望运行时间,而不是其最坏运行时间呢? 文心一言: 在分析算法的性能时,期望运行时间是一个重要的指标,它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…...
Leetcode - 滑动窗口
文章目录 1. 滑动窗口2. 举例2.1 无重复字符的最长子串2.2 长度最小的子数组2.3 滑动窗口最大值2.4 最小覆盖子串2.5 删除有序数组中的重复项 1. 滑动窗口 滑动窗口的大概思想如下: 可以通过两个指针来标识窗口的边界。窗口的长度是可以固定的,也可以是…...
如何保证数据传输的安全?
要确保数据传输的安全,您可以采取以下措施: 使用加密协议:使用安全的传输协议,如HTTPS(HTTP over SSL/TLS)或其他安全协议,以保护数据在传输过程中的安全性。加密协议可以有效防止数据被窃听或篡改。 强化身份验证&…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
