无涯教程-TensorFlow - 单词嵌入
Word embedding是从离散对象(如单词)映射到向量和实数的概念,可将离散的输入对象有效地转换为有用的向量。
Word embedding的输入如下所示:
blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) blues: (0.01396, 0.11887, -0.48963, ..., 0.033483, -0.10007, 0.1158) orange: (-0.24776, -0.12359, 0.20986, ..., 0.079717, 0.23865, -0.014213) oranges: (-0.35609, 0.21854, 0.080944, ..., -0.35413, 0.38511, -0.070976)
Word2vec
Word2vec是用于无监督最常见方法,它以一种方式训练模型,即给定的输入单词通过使用跳跃语法来预测单词的上下文。
TensorFlow提供了多种方法来实现这种模型,从而提高了复杂性和优化级别,并使用了多线程概念和更高级别的抽象。
import os import math import numpy as np import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector batch_size = 64 embedding_dimension = 5 negative_samples = 8 LOG_DIR = "logs/word2vec_intro" digit_to_word_map = {1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 6: "Six", 7: "Seven", 8: "Eight", 9: "Nine"} sentences = [] # 创建两种句子 - 奇数和偶数序列。for i in range(10000): rand_odd_ints = np.random.choice(range(1, 10, 2), 3) sentences.append(" ".join([digit_to_word_map[r] for r in rand_odd_ints])) rand_even_ints = np.random.choice(range(2, 10, 2), 3) sentences.append(" ".join([digit_to_word_map[r] for r in rand_even_ints])) # 将单词映射到索引 word2index_map = {} index = 0 for sent in sentences: for word in sent.lower().split(): if word not in word2index_map: word2index_map[word] = index index += 1 index2word_map = {index: word for word, index in word2index_map.items()} vocabulary_size = len(index2word_map) # 生成skip-gram对 skip_gram_pairs = [] for sent in sentences: tokenized_sent = sent.lower().split() for i in range(1, len(tokenized_sent)-1): word_context_pair = [[word2index_map[tokenized_sent[i-1]], word2index_map[tokenized_sent[i+1]]], word2index_map[tokenized_sent[i]]] skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][0]]) skip_gram_pairs.append([word_context_pair[1], word_context_pair[0][1]]) def get_skipgram_batch(batch_size): instance_indices = list(range(len(skip_gram_pairs))) np.random.shuffle(instance_indices)batch = instance_indices[:batch_size] x = [skip_gram_pairs[i][0] for i in batch] y = [[skip_gram_pairs[i][1]] for i in batch] return x, y #批处理示例 x_batch, y_batch = get_skipgram_batch(8) x_batch y_batch [index2word_map[word] for word in x_batch] [index2word_map[word[0]] for word in y_batch] #输入数据,标签 train_inputs=tf.placeholder(tf.int32, shape=[batch_size])train_labels = tf.placeholder(tf.int32, shape = [batch_size, 1]) # 嵌入查找表目前仅在 CPU 中实现tf.name_scope("embeddings"): embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_dimension], -1.0, 1.0), name = embedding) # 这本质上是一个查找表embed = tf.nn.embedding_lookup(embeddings, train_inputs) # 为 NCE 损失创建变量 nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_dimension], stddev = 1.0/math.sqrt(embedding_dimension))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) loss = tf.reduce_mean( tf.nn.nce_loss(weights = nce_weights, biases = nce_biases, inputs = embed, labels = train_labels,num_sampled = negative_samples, num_classes = vocabulary_size)) tf.summary.scalar("NCE_loss", loss) # 学习率衰减 global_step = tf.Variable(0, trainable = False) learningRate = tf.train.exponential_decay(learning_rate = 0.1, global_step = global_step, decay_steps = 1000, decay_rate = 0.95, staircase = True) train_step = tf.train.GradientDescentOptimizer(learningRate).minimize(loss) merged = tf.summary.merge_all() with tf.Session() as sess: train_writer = tf.summary.FileWriter(LOG_DIR, graph = tf.get_default_graph()) saver = tf.train.Saver() with open(os.path.join(LOG_DIR, metadata.tsv), "w") as metadata: metadata.write(Name Class ) for k, v in index2word_map.items(): metadata.write(%s %d % (v, k)) config = projector.ProjectorConfig() embedding = config.embeddings.add() embedding.tensor_name = embeddings.name # 将此张量链接到其元数据文件(例如标签)。embedding.metadata_path = os.path.join(LOG_DIR, metadata.tsv) projector.visualize_embeddings(train_writer, config) tf.global_variables_initializer().run() for step in range(1000): x_batch, y_batch = get_skipgram_batch(batch_size) summary, _ = sess.run([merged, train_step], feed_dict = {train_inputs: x_batch, train_labels: y_batch})train_writer.add_summary(summary, step)if step % 100 == 0:saver.save(sess, os.path.join(LOG_DIR, "w2v_model.ckpt"), step)loss_value = sess.run(loss, feed_dict = {train_inputs: x_batch, train_labels: y_batch})print("Loss at %d: %.5f" % (step, loss_value))# 在使用之前规范化嵌入norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True))normalized_embeddings = embeddings /norm normalized_embeddings_matrix = sess.run(normalized_embeddings)ref_word = normalized_embeddings_matrix[word2index_map["one"]]cosine_dists = np.dot(normalized_embeddings_matrix, ref_word) ff = np.argsort(cosine_dists)[::-1][1:10] for f in ff: print(index2word_map[f]) print(cosine_dists[f])
上面的代码生成以下输出-

TensorFlow - 单词嵌入 - 无涯教程网无涯教程网提供Word embedding是从离散对象(如单词)映射到向量和实数的概念,可将离散的输入对象有效...https://www.learnfk.com/tensorflow/tensorflow-word-embedding.html
相关文章:

无涯教程-TensorFlow - 单词嵌入
Word embedding是从离散对象(如单词)映射到向量和实数的概念,可将离散的输入对象有效地转换为有用的向量。 Word embedding的输入如下所示: blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) blues: (0.01396, 0.11887, -0.48963, ..., 0.03…...

Facebook AI mBART:巴别塔的硅解
2018年,谷歌发布了BERT(来自transformers的双向编码器表示),这是一种预训练的语言模型,在一系列自然语言处理(NLP)任务中对SOTA结果进行评分,并彻底改变了研究领域。类似的基于变压器…...

BDA初级分析——SQL清洗和整理数据
一、数据处理 数据处理之类型转换 字符格式与数值格式存储的数据,同样是进行大小排序, 会有什么区别? 以rev为例,看看字符格式与数值格式存储时,排序会有什么区别? 用cast as转换为字符后进行排序 SEL…...

汽车后视镜反射率测定仪
后视镜是驾驶员坐在驾驶室座位上直接获取汽车后方、侧方和下方等外部信息的工具。它起着“第三只眼睛”的作用。后视镜按安装位置划分通常分为车外后视镜、监视镜和内后视镜。外后视镜观察汽车后侧方监视镜观察汽车前下方内后视镜观察汽车后方及车内情况。用途不一样镜面结构也…...
Redis学习笔记
redis相关内容 默认端口6379 默认16个数据库,初始默认使用0号库 使用select 切换数据库 统一密码管理,所有库密码相同 dbsize:查看当前库key的数量 flushdb:清空当前库 flushall:清空全部库 redis是单线程 多路…...

韩顺平Linux 四十四--
四十四、rwx权限 权限的基本介绍 输入指令 ls -l 显示的内容如下 -rwxrw-r-- 1 root 1213 Feb 2 09:39 abc0-9位说明 第0位确定文件类型(d , - , l , c , b) l 是链接,相当于 windows 的快捷方式- 代表是文件是普通文件d 是目录,相…...
【支付宝小程序】分包优化教程
🦖我是Sam9029,一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 🐱🐉🐱🐉恭喜你,若此文你认为写的不错,不要吝啬你的赞扬,求收…...

语言基础2 矩阵和数组
语言基础2 矩阵和数组 矩阵和数组是matlab中信息和数据的基本表示形式 可以创建常用的数组和网格 合并现有的数组 操作数组的形状和内容 以及使用索引访问数组元素 用到的函数列表如下 一 创建 串联和扩展矩阵 矩阵时按行和列排列的数据元素的二维数据元素的二维矩…...
springMVC中过滤器抛出异常,自定义异常捕获
在过滤器中引入org.springframework.web.servlet.HandlerExceptionResolver AutowiredQualifier("handlerExceptionResolver")private HandlerExceptionResolver resolver; // doFilter中处理if (条件1) {if (条件2) {resolver.resolveException(request, response, …...
图像检索技术研究:深度度量与深度散列在相似性学习中的应用比较与实践 - 使用Python与Jupyter环境
引言 在计算机视觉领域,图像检索是一个长期存在并持续受到研究者关注的重要话题。随着大数据时代的到来,如何高效、准确地从海量数据中检索到相似的图像成为一个巨大的挑战。传统的检索方法在大数据环境下表现不佳,而深度学习技术的崛起为图…...

CSS加载失败的6个原因
有很多刚刚接触 CSS 的新手有时会遇到 CSS 加载失败这个问题,但测试时,网页上没有显示该样式的问题,这就说明 CSS 加载失败了。出现这种状况一般是因为的 CSS 路径书写错,或者是在浏览器中禁止掉了 CSS 的加载,可以重新…...

react之路由的安装与使用
一、路由安装 路由官网2021.11月初,react-router 更新到 v6 版本。使用最广泛的 v5 版本的使用 npm i react-router-dom5.3.0二、路由使用 2.1 路由的简单使用 第一步 在根目录下 创建 views 文件夹 ,用于放置路由页面 films.js示例代码 export default functio…...
基于RoCE的应用程序的MTU注意事项
目录 基于RoCE的应用程序的MTU注意事项 探测网络中的MTU设置 概要 原文 MTU测试结果 DOC: CentOS安装tshark抓包工具 基于RoCE的应用程序的MTU注意事项 原文:https://support.mellanox.com/s/article/MLNX2-117-1682kn InfiniBand协议最大传输单元ÿ…...
springboot集成Graphql相关问题汇总
1、idea在debug运行时出现java.lang.NoClassDefFoundError:kotlin/collections/AbstractMutableMap 解决:禁用idea dubugger中kotlin coroutine agent 见:https://stackoverflow.com/questions/70796177/after-the-spring-boot-source-code-is-compile…...
Angular16的路由守卫基础使用
Angular16的路由守卫基础使用 使用ng generate guard /guard/login命令生成guard文件因新版Angular取消了CanActivate的使用,改用CanActivateFn,因此使用router跳转需要通过inject的方式导入。 import { inject } from angular/core; import { CanActi…...

leetcode228. 汇总区间
题目 给定一个 无重复元素 的 有序 整数数组 nums 。 返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说,nums 的每个元素都恰好被某个区间范围所覆盖,并且不存在属于某个范围但不属于 nums 的数字 x 。 列表中的每个区间范围 [a,b]…...

删除有序链表中重复的元素-II(链表)
乌!蒙!山!连!着!山!外!山! 题目: 思路: 双指针,slow和fast,并且增加标记flag初始为1。 如果slow指向节点值等于fast指向节点值&…...
element单独检验form表单中的一项
<el-form-item prop"limitDays" style"margin-left: 5px;"><el-input v-model"ruleForm.limitDays" placeholder"天数" style"width: 100px;" /> </el-form-item> <el-form-item prop"limitCount…...

Webpack node、output.jsonpFunction 配置详解
Webpack node、output.jsonpFunction 配置详解 最近尝试给一些用到 webpack 的项目升级到最新 webpack5 版本,其中遇到了一些问题,我挑了两个比较典型的问题,其中主要涉及到了 webpack 的 node 属性跟 output.jsonpFunction (web…...

要跟静音开关说再见了!iPhone15新变革,Action按钮引领方向
有很多传言称iPhone 15 Pro会有很多变化,但其中一个变化可能意味着iPhone体验从第一天起就有的一项功能的终结。我说的是静音开关,它可以让你轻松地打开或关闭iPhone的铃声。 根据越来越多的传言,iPhone 15 Pro和iPhone 15 Pro Max将拆除静音…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...