当前位置: 首页 > news >正文

kafka线上问题优化

如何防止消息丢失

  • 生产者:
    1. 使用同步发送
    2. 把ack设成1或者all(非0,0可能会出现消息丢失的情况),并且设置同步的分区数>=2
  • 消费者:把自动提交改成手动提交

如何防止重复消费

在防止消息丢失的方案中,如果生产者发送完消息后,因为网络抖动,没有收到ack,但实际上broker已经收到了。此时生产者会进行重试,于是broker就会收到多条相同的消息,而造成消费者的重复消费。

如何解决:

  • 生产者关闭重试:虽不会发送相同消息,但会造成丢消息(不建议)【同步发送消息并且开启重试,ack设置为1或者all
  • 消费者解决非幂等性消费问题

所谓的幂等性:多次访问的结果是⼀样的。对于rest的请求(get(幂等)、post(非幂等)、put(幂等)、delete(幂等))

解决方案:

  • 在数据库中创建联合主键,防止相同的主键创建出多条记录
  • 使用分布式锁,以业务id为锁。保证只有⼀条记录能够创建成功(setnx

image-20230816213425608

如何做到消息的顺序消费(效率不高,RocketMQ)

  • 生产者:保证消息按顺序发送,且消息不丢失——使用同步的发送,ack设置成非0的值。
  • 消费者:主题只能设置⼀个分区,消费组中只能有一个消费者【消费者只能限制单partition顺序消费,这种效率不高】

kafka的顺序消费使用场景不多,因为牺牲掉了性能,但是比如rocketmq在这⼀块有专门的功能已设计好。

如何解决消息积压问题

image-20230816220429249

积压的消息越多,消费者消费越慢(寻址越来越慢),越慢积压越多,死循环,导致整个kafka集群磁盘IO都很慢导致多个服务不可用

1.消息积压问题的出现

消费者消费消息速度远赶不上生产者生产消息的速度,导致kafka中有大量的数据没有被消费。随着没有被消费的数据堆积越多,消费者寻址的性能会越来越差,最后导致整个kafka对外提供的服务的性能很差,从而造成其他服务也访问速度变慢,造成服务雪崩。

2.消息积压的解决方案

  • 消费者中,使用多线程,充分利用机器的性能进行消费消息。
  • 通过业务的架构设计,提升业务层面消费的性能。
  • 创建多个消费组,多个消费者,部署到其他机器上,⼀起消费,提高消费者的消费速度
  • 创建⼀个消费者,该消费者在kafka另建⼀个主题,配上多个分区,多个分区再配上多个消费者。该消费者将poll下来的消息,不进行消费,直接转发到新建的主题上。此时,新的主题的多个分区的多个消费者就开始⼀起消费了。——不常用

image-20230816221101890

实现延时队列的效果(实现比较费劲,RabbitMQ)

1.应用场景

订单创建后,超过30分钟没有⽀付,则需要取消订单,这种场景可以通过延时队列来实现

2.具体方案

image-20230816221218523

  1. kafka中创建相应的主题,每个topic表示延时的间隔
    • topic_5s: 延时5s执行的队列
    • topic_1m: 延时1分钟执行的队列
    • topic_30m: 延时30分钟执行的队列
  2. 消息发送者发送消息到相应的topic,并带上消息的发送时间
  3. 消费者订阅相应的topic,消费该主题的消息(轮询)
  4. 消费者消费消息时判断消息的创建时间和当前时间是否超过30分钟(前提是订单没支付)
    • 如果是:去数据库中修改订单状态为已取消
    • 如果否:记录当前消息的offset,并不再继续消费之后的消息。等待1分钟后,再次向kafka拉取该offset及之后的消息,继续进行判断,以此反复。

相关文章:

kafka线上问题优化

如何防止消息丢失 生产者: 使用同步发送把ack设成1或者all(非0,0可能会出现消息丢失的情况),并且设置同步的分区数>2 消费者:把自动提交改成手动提交 如何防止重复消费 在防止消息丢失的方案中&#…...

FifthOne:用于矢量搜索的计算机视觉接口

一、说明 数据太多了。数据湖和数据仓库;广阔的像素牧场和充满文字的海洋。找到正确的数据就像大海捞针一样!如果你喜欢开源机器学习库 FiftyOne,矢量搜索引擎通过将复杂数据(图像的原始像素值、文本文档中的字符)转换为称为嵌入矢…...

认识Axios

axios中文网 一. 为什么会诞生Axios 最初浏览器页面向服务器请求数据时,返回的是整个页面,整个页面都会刷新ajax的出现,它可以在页面无刷新的情况下请求数据原生的XMLHttpRequest,jQuery封装的ajax,以及axios都可以实…...

系统架构设计专业技能 · 信息安全技术

系列文章目录 系统架构设计专业技能 网络技术(三) 系统架构设计专业技能 系统安全分析与设计(四)【系统架构设计师】 系统架构设计高级技能 软件架构设计(一)【系统架构设计师】 系统架构设计高级技能 …...

kafka晋升之路-理论+场景

kafka晋升之路 一:故事背景二:核心概念2.1 系统架构2.2 生产者(Producer)2.2.1 生产者分区2.2.2 生产者分区策略 2.3 经纪人(Broker)2.3.1 主题(Topic)2.3.2 分区(Partit…...

(牛客网)链表相加(二)

嗯哼~ 题目 描述 假设链表中每一个节点的值都在 0 - 9 之间,那么链表整体就可以代表一个整数。 给定两个这种链表,请生成代表两个整数相加值的结果链表。 数据范围:0 ≤ n,m ≤ 1000000,链表任意值 0 ≤ val ≤ 9 要求&#x…...

Vs code 使用中的小问题

1.Java在Vs code 中使用单元测试失败或者如何使用单元测试 创建Java项目,或者将要测试的文件夹添加进工作区 要出现lib包,并有两个测试用的jar包 编写测试文件 public class TestUnit{ public static void main(String[] args) {String str "…...

vue2和vue3

1. 双向数据绑定原理发生了改变 vue2的双向数据绑定是利用了es5 的一个API Object.definepropert() 对数据进行劫持 结合发布订阅模式来实现的。vue3中使用了es6的proxyAPI对数据进行处理。 相比与vue2,使用proxy API 优势有:defineProperty只能监听某个…...

火山引擎ByteHouse:一套方案,让OLAP引擎在精准投放场景更高效

由于流量红利逐渐消退,越来越多的广告企业和从业者开始探索精细化营销的新路径,取代以往的全流量、粗放式的广告轰炸。精细化营销意味着要在数以亿计的人群中优选出那些最具潜力的目标受众,这无疑对提供基础引擎支持的数据仓库能力&#xff0…...

【论文阅读】SHADEWATCHER:使用系统审计记录的推荐引导网络威胁分析(SP-2022)

SHADEWATCHER: Recommendation-guided CyberThreat Analysis using System Audit Records S&P-2022 新加坡国立大学、中国科学技术大学 Zengy J, Wang X, Liu J, et al. Shadewatcher: Recommendation-guided cyber threat analysis using system audit records[C]//2022 I…...

Mac 使用 rar 命令行工具解压和压缩文件

在 Mac 中常遇到的压缩文件有 zip 和 rar 格式的,如果是 zip 格式的 Mac 系统默认双击一下文件就能直接解压了,但 rar 文件就不行。 需要额外下载 rar 工具了实现。 第一步:下载 rar 工具 工具网址:https://www.rarlab.com/dow…...

7.maven

1 初始Maven 1.1 什么是Maven Maven是Apache旗下的一个开源项目,是一款用于管理和构建java项目的工具。 官网:https://maven.apache.org/ Apache 软件基金会,成立于1999年7月,是目前世界上最大的最受欢迎的开源软件基金会&…...

MySQL 主从复制遇到 1590 报错

作者通过一个主从复制过程中 1590 的错误,说明了 MySQL 8.0 在创建用户授权过程中的注意事项。 作者:王祥 爱可生 DBA 团队成员,主要负责 MySQL 故障处理和性能优化。对技术执着,为客户负责。 本文来源:原创投稿 爱可生…...

games101-windows环境配置(CMake+vcpkg+VS2019)

下载工具 安装CMake 安装vcpkg 安装vs2019 安装 eigen3 opencv 在vcpkg安装目录下,使用Windows Power Shell运行下面脚本 .\vcpkg.exe install eigen3:x64-windows .\vcpkg.exe install opencv:x64-windows安装过程中可能会用红色字体提示:Failed to…...

2023年Java核心技术面试第五篇(篇篇万字精讲)

目录 十 . HashMap,ConcurrentHashMap源码解析 10.1 HashMap 的源码解析: 10.1.1数据结构: 10.1.2哈希算法: 10.1.3解决哈希冲突: 10.1.4扩容机制: 10.1.5如何使用 HashMap: 10.2 HashMap 关注…...

第十课:Qt 字符编码和中文乱码相关问题

功能描述:最全的 Qt 字符编码相关知识以及中文乱码的原因与解决办法 一、字符编码种类 ASCII 码 美国人对信息交流的编码,包括 26 个字母(大小写)、数字和标点符号等,用一个字节(8 位)表示这些…...

Go语言基础:Interface接口、Goroutines线程、Channels通道详细案例教程

目录标题 一、Interface1. Declaring and implementing an interface2. Practical use of an interface3. Nterface internal representation4. Empty interface5. Type assertion6. Type switch7. Implementing interfaces using pointer receivers VS value receivers8. Impl…...

Cesium加载ArcGIS Server4490且orgin -400 400的切片服务

Cesium在使用加载Cesium.ArcGisMapServerImageryProvider加载切片服务时,默认只支持wgs84的4326坐标系,不支持CGCS2000的4490坐标系。 如果是ArcGIS发布的4490坐标系的切片服务,如果原点在orgin X: -180.0Y: 90.0的情况下,我们可…...

Objectarx 2021使用vs2019生成报错 /RTCc rejects conformant code

error C2338: /RTCc rejects conformant code错误解决 使用VS2019/VS2022生成项目报错 严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C1189 #error: /RTCc rejects conformant code, so it is not supported by the C Standard Library. Either remove this compiler opti…...

QT中使用QtXlsx库的三种方法 QT基础入门【Excel的操作】

对于Linux用户,如果Qt是通过“ apt-get”之类的软件包管理器工具安装的,请确保已安装Qt5开发软件包qtbase5-private-dev QtXlsx是一个可以读写Excel文件的库。它不需要Microsoft Excel,可以在Qt5支持的任何平台上使用。该库可用于从头开始生成新的.xlsx文件从现有.xlsx文件中…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...