FifthOne:用于矢量搜索的计算机视觉接口
一、说明
数据太多了。数据湖和数据仓库;广阔的像素牧场和充满文字的海洋。找到正确的数据就像大海捞针一样!如果你喜欢开源机器学习库 FiftyOne,矢量搜索引擎通过将复杂数据(图像的原始像素值、文本文档中的字符)转换为称为嵌入矢量的实体来解决此问题。
矢量搜索引擎通过将复杂数据(图像的原始像素值、文本文档中的字符)转换为称为嵌入矢量的实体来解决此问题。然后对这些数值向量编制索引,以便您可以有效地搜索原始数据。毫不奇怪,像Qdrant,Pinecone,LanceDB和Milvus这样的矢量搜索引擎已经成为几乎所有新AI应用程序的重要组成部分。
如果您正在处理图像或视频数据,并且希望将矢量搜索合并到工作流程中,则可能会产生相当多的开销:
- 您如何实现跨模式检索,例如搜索带有文本的图像?
- 如何整合置信度阈值或类标签等传统搜索筛选器?
- 在图像中搜索物体(人、猫、狗、汽车、自行车等)怎么样?
这些只是您将遇到的众多挑战中的一小部分。等。停。别急。有更好的方法...
FiftyOne是用于矢量搜索的计算机视觉接口。FiftyOne开源工具包现在具有与Qdrant,Pinecone,LanceDB和Milvus的本机集成,因此您可以使用首选的矢量搜索引擎在一行代码中有效地搜索视觉数据。
想要一键找到与数据集中第二个样本最相似的 25 张图像?想要通过点击查找至少包含一个人和一辆自行车的交通图片?您可以!
二、FiftyOne它是如何工作的?
1. 加载数据集。
为了便于说明,我们将加载 MS COCO 验证拆分的子集。
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
from fiftyone import ViewField as Fdataset = foz.load_zoo_dataset("coco-2017", split='validation', max_samples = 1000
)
session = fo.launch_app(dataset)
2. 生成相似度指数。
为了搜索我们的媒体,我们需要索引数据。在 FiftyOne 中,我们可以通过函数执行此操作。指定要用于生成嵌入向量的模型,以及要在后端使用的向量搜索引擎。您还可以为相似性索引指定一个名称,如果要针对多个索引运行向量搜索,这将非常有用。compute_similarity()
## setup lancedb
pip install lancedb
## generate a similarity index
## with default model embeddings
## using LanceDB backend
fob.compute_similarity(dataset,brain_key="lancedb_index",backend="lancedb",
)## setup milvus
## download and start docker container +
pip install pymilvus
## generate a similarity index
## with CLIP model embeddings
## using Milvus backend
fob.compute_similarity(dataset,brain_key="milvus_clip_index",backend="milvus",metric="dotproduct"
)
3. 搜索索引。
现在,您可以使用该方法使用一行代码对整个数据集运行图像搜索。要找到与数据集中第二张图像最相似的 25 张图像,我们可以传入样本的 ID、我们想要返回的结果数以及我们要搜索的索引的名称:sort_by_similarity()
## get ID of first sample
query = dataset.skip(1).first().id
## find 25 most similar images with LanceDB backend
sim_view = dataset.sort_by_similarity(query,k=25,brain_key="lancedb_index"
)## display results
session = fo.launch_app(sim_view)
您也可以完全通过 FiftyOne 应用程序中的 UI 执行此操作:
三、语义搜索变得简单
处理多模式数据的麻烦已经一去不复返了。如果你想使用自然语言在语义上搜索你的图像,你可以使用完全相同的语法!使用 CLIP 等多模式模型创建索引嵌入,然后传入文本查询而不是示例 ID:
## semantic query
query = "kites flying in the sky"## find 30 most similar images with Milvus backend
kites_view = dataset.sort_by_similarity(query,k=30,brain_key="milvus_clip_index"
)## display results
session = fo.launch_app(kites_view)
这在非结构化数据探索中特别有用,并且比现有标签允许的更深入地挖掘数据。
这也可以完全在 FiftyOne 应用程序中执行:
四、传递预过滤器
对数据的特定子集运行矢量搜索通常涉及编写复杂的预过滤器:在矢量搜索之前传递到矢量搜索引擎以应用于数据集的过滤器。
FiftyOne的矢量搜索集成为您处理这些细节!
如果要查找看起来像“交通”的图像,但只希望将此搜索应用于包含人和自行车的图像,可以通过调用筛选视图来实现此目的:sort_by_similarity()
## create filtered view
view = dataset.match_labels(F("label").is_in(["person", "bicycle"]))## search against this view
traffic_view = view.sort_by_similarity("traffic",k=25,brain_key="milvus_clip_index"
)
session = fo.launch_app(traffic_view)
五、把你的东西整理好
上述所有功能也可以与对象检测补丁一起开箱即用!
生成相似性索引时,您需要做的就是传入参数 - 命名可以找到“对象”的标签字段 - 并将为所有图像中的每个对象生成嵌入向量。矢量数据库为这些修补程序嵌入编制索引,以便您可以按与引用对象或自然语言查询的相似性对这些检测进行排序:patches_fieldcompute_similarity()
## setup qdrant
# pull and start docker container +
pip install qdrant-client## create a similarity index for ground truth patches
## with CLIP model, indexed with Qdrant vector database
fob.compute_similarity(dataset,patches_field="ground_truth",model="clip-vit-base32-torch",brain_key="qdrant_gt_index",backend="qdrant"
)## Search for the object that looks most like a tennis racket
tennis_view = dataset.to_patches("ground_truth").sort_by_similarity("tennis racket",k = 25,brain_key= "qdrant_gt_index"
)session = fo.launch_app(tennis_view)
六、结论
无论您有多少图像或视频,您都需要使用矢量搜索。FiftyOne的原生矢量搜索集成将使您的生活更轻松。使用 FiftyOne,相似性搜索与应用更传统的筛选和查询操作一样简单。将矢量搜索查询与元数据查询混合搭配,以满足您的喜好。
有关 FiftyOne 中矢量搜索的一般信息,请查看 FiftyOne App 中的按相似性排序,以及有关相似性的 FiftyOne Brain 用户指南。
如果你喜欢开源机器学习库 FiftyOne,请在 GitHub 上给这个项目⭐一个(3,900 颗星,而且还在增加!)来表示您的支持。
相关文章:
FifthOne:用于矢量搜索的计算机视觉接口
一、说明 数据太多了。数据湖和数据仓库;广阔的像素牧场和充满文字的海洋。找到正确的数据就像大海捞针一样!如果你喜欢开源机器学习库 FiftyOne,矢量搜索引擎通过将复杂数据(图像的原始像素值、文本文档中的字符)转换为称为嵌入矢…...
认识Axios
axios中文网 一. 为什么会诞生Axios 最初浏览器页面向服务器请求数据时,返回的是整个页面,整个页面都会刷新ajax的出现,它可以在页面无刷新的情况下请求数据原生的XMLHttpRequest,jQuery封装的ajax,以及axios都可以实…...
系统架构设计专业技能 · 信息安全技术
系列文章目录 系统架构设计专业技能 网络技术(三) 系统架构设计专业技能 系统安全分析与设计(四)【系统架构设计师】 系统架构设计高级技能 软件架构设计(一)【系统架构设计师】 系统架构设计高级技能 …...
kafka晋升之路-理论+场景
kafka晋升之路 一:故事背景二:核心概念2.1 系统架构2.2 生产者(Producer)2.2.1 生产者分区2.2.2 生产者分区策略 2.3 经纪人(Broker)2.3.1 主题(Topic)2.3.2 分区(Partit…...
(牛客网)链表相加(二)
嗯哼~ 题目 描述 假设链表中每一个节点的值都在 0 - 9 之间,那么链表整体就可以代表一个整数。 给定两个这种链表,请生成代表两个整数相加值的结果链表。 数据范围:0 ≤ n,m ≤ 1000000,链表任意值 0 ≤ val ≤ 9 要求&#x…...
Vs code 使用中的小问题
1.Java在Vs code 中使用单元测试失败或者如何使用单元测试 创建Java项目,或者将要测试的文件夹添加进工作区 要出现lib包,并有两个测试用的jar包 编写测试文件 public class TestUnit{ public static void main(String[] args) {String str "…...
vue2和vue3
1. 双向数据绑定原理发生了改变 vue2的双向数据绑定是利用了es5 的一个API Object.definepropert() 对数据进行劫持 结合发布订阅模式来实现的。vue3中使用了es6的proxyAPI对数据进行处理。 相比与vue2,使用proxy API 优势有:defineProperty只能监听某个…...
火山引擎ByteHouse:一套方案,让OLAP引擎在精准投放场景更高效
由于流量红利逐渐消退,越来越多的广告企业和从业者开始探索精细化营销的新路径,取代以往的全流量、粗放式的广告轰炸。精细化营销意味着要在数以亿计的人群中优选出那些最具潜力的目标受众,这无疑对提供基础引擎支持的数据仓库能力࿰…...
【论文阅读】SHADEWATCHER:使用系统审计记录的推荐引导网络威胁分析(SP-2022)
SHADEWATCHER: Recommendation-guided CyberThreat Analysis using System Audit Records S&P-2022 新加坡国立大学、中国科学技术大学 Zengy J, Wang X, Liu J, et al. Shadewatcher: Recommendation-guided cyber threat analysis using system audit records[C]//2022 I…...
Mac 使用 rar 命令行工具解压和压缩文件
在 Mac 中常遇到的压缩文件有 zip 和 rar 格式的,如果是 zip 格式的 Mac 系统默认双击一下文件就能直接解压了,但 rar 文件就不行。 需要额外下载 rar 工具了实现。 第一步:下载 rar 工具 工具网址:https://www.rarlab.com/dow…...
7.maven
1 初始Maven 1.1 什么是Maven Maven是Apache旗下的一个开源项目,是一款用于管理和构建java项目的工具。 官网:https://maven.apache.org/ Apache 软件基金会,成立于1999年7月,是目前世界上最大的最受欢迎的开源软件基金会&…...
MySQL 主从复制遇到 1590 报错
作者通过一个主从复制过程中 1590 的错误,说明了 MySQL 8.0 在创建用户授权过程中的注意事项。 作者:王祥 爱可生 DBA 团队成员,主要负责 MySQL 故障处理和性能优化。对技术执着,为客户负责。 本文来源:原创投稿 爱可生…...
games101-windows环境配置(CMake+vcpkg+VS2019)
下载工具 安装CMake 安装vcpkg 安装vs2019 安装 eigen3 opencv 在vcpkg安装目录下,使用Windows Power Shell运行下面脚本 .\vcpkg.exe install eigen3:x64-windows .\vcpkg.exe install opencv:x64-windows安装过程中可能会用红色字体提示:Failed to…...
2023年Java核心技术面试第五篇(篇篇万字精讲)
目录 十 . HashMap,ConcurrentHashMap源码解析 10.1 HashMap 的源码解析: 10.1.1数据结构: 10.1.2哈希算法: 10.1.3解决哈希冲突: 10.1.4扩容机制: 10.1.5如何使用 HashMap: 10.2 HashMap 关注…...
第十课:Qt 字符编码和中文乱码相关问题
功能描述:最全的 Qt 字符编码相关知识以及中文乱码的原因与解决办法 一、字符编码种类 ASCII 码 美国人对信息交流的编码,包括 26 个字母(大小写)、数字和标点符号等,用一个字节(8 位)表示这些…...
Go语言基础:Interface接口、Goroutines线程、Channels通道详细案例教程
目录标题 一、Interface1. Declaring and implementing an interface2. Practical use of an interface3. Nterface internal representation4. Empty interface5. Type assertion6. Type switch7. Implementing interfaces using pointer receivers VS value receivers8. Impl…...
Cesium加载ArcGIS Server4490且orgin -400 400的切片服务
Cesium在使用加载Cesium.ArcGisMapServerImageryProvider加载切片服务时,默认只支持wgs84的4326坐标系,不支持CGCS2000的4490坐标系。 如果是ArcGIS发布的4490坐标系的切片服务,如果原点在orgin X: -180.0Y: 90.0的情况下,我们可…...
Objectarx 2021使用vs2019生成报错 /RTCc rejects conformant code
error C2338: /RTCc rejects conformant code错误解决 使用VS2019/VS2022生成项目报错 严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C1189 #error: /RTCc rejects conformant code, so it is not supported by the C Standard Library. Either remove this compiler opti…...
QT中使用QtXlsx库的三种方法 QT基础入门【Excel的操作】
对于Linux用户,如果Qt是通过“ apt-get”之类的软件包管理器工具安装的,请确保已安装Qt5开发软件包qtbase5-private-dev QtXlsx是一个可以读写Excel文件的库。它不需要Microsoft Excel,可以在Qt5支持的任何平台上使用。该库可用于从头开始生成新的.xlsx文件从现有.xlsx文件中…...
容器和云原生(二):Docker容器化技术
目录 Docker容器的使用 Docker容器关键技术 Namespace Cgroups UnionFS Docker容器的使用 首先直观地了解docker如何安装使用,并快速启动mysql服务的,启动时候绑定主机上的3306端口,查找mysql容器的ip,使用mysql -h contain…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
