深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init
模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()
模式下运行,autograd
不会将其考虑在内。
根据He, K等人于2015年在《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。结果张量中的值采样自 U ( − bound , bound ) U(-\text{bound}, \text{bound}) U(−bound,bound),其中:
bound = gain × 3 fan_mode \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} bound=gain×fan_mode3
这种方法也被称为He initialisation。
语法
torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
参数
tensor
:[Tensor
] 一个 N N N维张量torch.Tensor
a
:[float
] 这层之后使用的rectifier的斜率系数(ReLU的默认值为0)mode
:[str
] 可以为fan_in
或fan_out
。若为fan_in
则保留前向传播时权值方差的量级,若为fan_out
则保留反向传播时的量级,默认值为fan_in
。nonlinearity
:[str
] 一个非线性函数,即一个nn.functional
的名称,推荐使用relu
或者leaky_relu
,默认值为leaky_relu
。
返回值
一个torch.Tensor
且参数tensor
也会更新
实例
w = torch.empty(3, 5)
nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
函数实现
def kaiming_uniform_(tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu'
):r"""Fills the input `Tensor` with values according to the methoddescribed in `Delving deep into rectifiers: Surpassing human-levelperformance on ImageNet classification` - He, K. et al. (2015), using auniform distribution. The resulting tensor will have values sampled from:math:`\mathcal{U}(-\text{bound}, \text{bound})` where.. math::\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}Also known as He initialization.Args:tensor: an n-dimensional `torch.Tensor`a: the negative slope of the rectifier used after this layer (onlyused with ``'leaky_relu'``)mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``preserves the magnitude of the variance of the weights in theforward pass. Choosing ``'fan_out'`` preserves the magnitudes in thebackwards pass.nonlinearity: the non-linear function (`nn.functional` name),recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).Examples:>>> w = torch.empty(3, 5)>>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')"""if torch.overrides.has_torch_function_variadic(tensor):return torch.overrides.handle_torch_function(kaiming_uniform_,(tensor,),tensor=tensor,a=a,mode=mode,nonlinearity=nonlinearity)if 0 in tensor.shape:warnings.warn("Initializing zero-element tensors is a no-op")return tensorfan = _calculate_correct_fan(tensor, mode)gain = calculate_gain(nonlinearity, a)std = gain / math.sqrt(fan)bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviationwith torch.no_grad():return tensor.uniform_(-bound, bound)
相关文章:
深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
查询Oracle和MySQL数据库中当前所有连接信息
查询Oracle当前所有连接信息: SELECTs.sid AS 会话ID,s.serial# AS 序列号,s.username AS 用户名,s.osuser AS 操作系统用户,s.machine AS 客户端机器,s.program AS 客户端程序,s.status AS 会话状态,s.sql_id AS 正在执行的SQL_ID,t.sql_text AS 正在执行的SQL文本…...

Android glide框架及框架涉及到的设计模式
目录 原文链接Android glide框架 简单使用介绍Glide 框架整体结构设计Glide 框架的优点基本使用:Glide占位符 Android glide框架涉及到的设计模式 原文链接 Android glide框架 简单使用介绍 Glide:快速高效的Android图片加载库,可以自动加载…...

使用yolov5进行安全帽检测填坑指南
参考项目 cGitHub - PeterH0323/Smart_Construction: Base on YOLOv5 Head Person Helmet Detection on Construction Sites,基于目标检测工地安全帽和禁入危险区域识别系统,🚀😆附 YOLOv5 训练自己的…...

【BASH】回顾与知识点梳理(三十二)
【BASH】回顾与知识点梳理 三十二 三十二. SELinux 初探32.1 什么是 SELinux当初设计的目标:避免资源的误用传统的文件权限与账号关系:自主式访问控制, DAC以政策规则订定特定进程读取特定文件:委任式访问控制, MAC 32.2 SELinux 的运作模式安…...

vscode远程调试PHP代码
目录 一、准备工作 二、ssh连接和xdebug配置 1.ssh连接 2.xdebug配置 三、xdebug调试,访问 一、准备工作 1.安装vscode里面的两个扩展 2.安装对应PHP版本的xdebug 去xdebug官方,复制自己的phpinfo源码到方框里,再点击Analyse Xdebug: …...
flink1.17 实现 udf scalarFunctoin get_json_object 支持 非标准化json
特色 相比官方的json_value,该函数支持非标准化json,比如v是个object,但是非标准json会外套一层引号,内部有反引号. eg: {"kkkk2": "{\"kkkk1\":\"vvvvvvv\"}" } 支持value为 100L 这种java格式的bigint. {"k":999L…...

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)九:自定义组件封装下
一、本章内容 续上一张,本章实现一些自定义组件的封装,包括文件上传组件封装、级联选择组件封装、富文本组件封装等。 1. 详细课程地址: 待发布 2. 源码下载地址: 待发布 二、界面预览 三、开发视频 基于VUE3+Layui从头搭建通用后台管...
设计模式详解-装饰器模式
类型:结构型模式 实现原理:装饰器模式通过将对象包装在装饰器类中,并在保持类方法签名完整性的前提下,提供额外功能 作用:动态地给一个对象添加一些额外的职责。增加功能方面,装饰器模式比生成子类更灵活…...

Android5:活动生命周期
创建项目Stopwatch activity_main.xml <?xml version"1.0" encoding"utf-8"?> <LinearLayoutxmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools"android:layout_w…...
第2章 数据结构和算法概述
2.3线性结构和非线性结构 数据结构包括: 线性结构和非线性结构 2.3.1线性结构 线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系线性结构有两种不同的存储结构,即顺序存储结构(数组)和链式存储结构(链表)。顺序存储的线性表称…...

WPF国际化的实现方法(WpfExtensions.Xaml)
https://blog.csdn.net/eyupaopao/article/details/120090431 resx资源文件实现 resx资源文件,实现的过程比第一种复杂,但resx文件本身编辑比较简单,维护起来比较方便。需要用到的框架:WpfExtensions.Xaml 为每种语言添加.resx资…...

【Linux】—— 进程程序替换
目录 序言 (一)替换原理 1、进程角度——见见猪跑 1️⃣ 认识 execl 函数 2、程序角度——看图理解 (二)替换函数 1、命名理解 2、函数理解 1️⃣execlp 2️⃣execv 3️⃣execvp 4️⃣execle 5️⃣execve 6️⃣execve…...

idea创建javaweb项目,jboss下没有web application
看看下图这个地方有没有web application...

广东灯具3D扫描抄数建模服务3D测绘出图纸三维逆向设计-CASAIM
灯具三维逆向建模是一种将实际物体转换为数字模型的过程。通过逆向工程技术,可以将现有的灯具进行3D扫描,然后利用专业的逆向设计软件将其转换为准确的三维模型。 以下是CASAIM实施灯具三维逆向建模的一般步骤图: 1. 扫描:三维扫…...
Nginx反向代理-负载均衡、webshell实践
目录 1.nginx反向代理-负载均衡 1)搭建web项目 2)修改 nginx.conf的配置 2.webshell 实践 1)异或操作绕过 2)取反绕过 3)php语法绕过 1.nginx反向代理-负载均衡 1)搭建web项目 首先通过SpringBoo…...

第六阶|见道明心的笔墨(上)从书法之美到生活之美——林曦老师的线上直播书法课
如果你有需要,可以找我的,我这边有老师的所有课程 如果你有需要,可以找我的,我这边有老师的所有课程...
nbcio-boot从3.0升级到3.1的出现用户管理与数据字典bug
升级后出现 系统管理里的用户管理出现下面问题 2023-08-17 09:44:38.902 [http-nio-8080-exec-4] [1;31mERROR[0;39m [36mo.jeecg.common.exception.JeecgBootExceptionHandler:69[0;39m - java.lang.String cannot be cast to java.lang.Long java.lang.ClassCastException:…...

Curson 编辑器
Curson 汉化与vacode一样 Curson 自带chat功能 1、快捷键ctrlk(代码中编辑) 2、快捷键ctrll 右侧打开窗口...
Shell编程学习之函数的应用
Shell编程中的函数:伪代码表示: function 函数名(){函数体}注意事项: 1.函数无参数; 2.函数无返回值类型; 3.function可以不写; 4.函数不被调用,就不会执行; 5.函数名不能使用…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...

云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...

使用ch340继电器完成随机断电测试
前言 如图所示是市面上常见的OTA压测继电器,通过ch340串口模块完成对继电器的分路控制,这里我编写了一个脚本方便对4路继电器的控制,可以设置开启时间,关闭时间,复位等功能 软件界面 在设备管理器查看串口号后&…...

20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题
20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起,为了跨网段推流,千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...