Microsoft 图像BERT,基于大规模图文数据的跨模态预训练
视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于许多多模态任务来说,满足这一要求仍然非常困难和昂贵。Microsoft研究人员最近发表的一篇论文提出了一种新的视觉语言预训练模型,用于图像 - 文本联合嵌入,ImageBERT,它在MSCOCO(图像检索任务)和Flickr 30k(文本检索)数据集上都实现了SOTA性能。
与Google的BERT(来自变压器的双向编码器表示)语言模型一样,ImageBERT是基于Transformer的。它采用不同的模态(文本和视觉标记)作为输入,通过嵌入层编码到不同的嵌入中。然后将这些嵌入输入多层双向自注意力转换器,该转换器训练跨模态转换器来建模图像和文本之间的关系。
ImageBERT模型架构
数据的数量和质量对于视觉语言任务的跨模型预训练至关重要,因此研究人员开发了一种弱监督方法,用于从互联网收集大规模图像文本数据,以提高预训练性能。他们的大规模weAk监督图像文本(LAIT)数据集包括10万个视觉语言对(图像+描述),并用于预训练ImageBERT模型。
弱监督数据收集管道
在LAIT之后,研究人员在第二阶段对公共数据集概念标题(最广泛使用的图像文本预训练数据)和SBU标题(SBU标题照片数据集)对模型进行了预训练。该模型同时在研究人员设计的四个任务上进行预训练,以对文本和视觉内容及其相互关系进行建模:
**任务1:**掩蔽语言建模(MLM) –这与BERT培训中的MLM相同。它提出了一个新的预训练目标,并能够训练深度双向嵌入。
**任务2:**屏蔽对象分类 (MOC) – MLM 任务的扩展。
**任务3:**屏蔽区域特征回归 (MRFR) – 与 MOC 类似,此任务还通过更精确的对象特征预测工作对视觉内容进行建模。
**任务4:**图像文本匹配 (ITM) – 学习图像-文本对齐的任务。
实验结果表明,多阶段预训练方法比单阶段预训练方法取得了更好的效果。研究人员还进行了微调,并将预训练的ImageBERT模型与SOTA方法在图像检索和文本检索任务上进行了比较,其中ImageBERT在MSCOCO和Flickr30k数据集上都获得了最佳结果。
研究人员希望他们的新模型和数据集能够进一步推进跨模态预训练的研究和发展。
论文ImageBERT:使用大规模弱监督图像文本数据的跨模态预训练发表在arXiv上。
相关文章:

Microsoft 图像BERT,基于大规模图文数据的跨模态预训练
视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于…...
vue3+elementUI-plus实现select下拉框的虚拟滚动
网上查了几个方案,要不就是不兼容,要不就是不支持vue3, 最终找到一个合适的,并且已上线使用,需要修改一下样式: 代码如下: main.js里引用 import vue3-virtual-scroller/dist/vue3-virtual-scroller.css; …...

学C的第三十四天【程序环境和预处理】
相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十三天【C语言文件操作】_高高的胖子的博客-CSDN博客 1 . 程序的翻译环境和执行环境 在ANSI C(C语言标准)的任何一种实现中,存在两个不同的环境。 ࿰…...

微服务中间件--Ribbon负载均衡
Ribbon负载均衡 a.Ribbon负载均衡原理b.Ribbon负载均衡策略 (IRule)c.Ribbon的饥饿加载 a.Ribbon负载均衡原理 1.发起请求http://userservice/user/1,Ribbon拦截该请求 2.Ribbon通过EurekaServer拉取userservice 3.EurekaServer返回服务列表给Ribbon做负载均衡 …...

字符设备驱动实例(ADC驱动)
四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…...

python基础5——正则、数据库操作
文章目录 一、数据库编程1.1 connect()函数1.2 命令参数1.3 常用语句 二、正则表达式2.1 匹配方式2.2 字符匹配2.3 数量匹配2.4 边界匹配2.5 分组匹配2.6 贪婪模式&非贪婪模式2.7 标志位 一、数据库编程 可以使用python脚本对数据库进行操作,比如获取数据库数据…...

SpringAOP原理:手写动态代理实现
0、基础知识 AOP我们知道,是在不修改源代码的情况下,为代码添加一些新功能的技术。通过动态代理,可以在不修改原始类代码的前提下,对方法进行拦截和增强。 动态代理常用于在不改变原有业务逻辑的情况下,对方法…...

【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板
作品概况 页面数量:共 10 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:旅游度假,生活服务 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为「酒店在线预订」的移动端…...
Android JNI系列详解之CMake和ndk-build编译工具介绍
一、前提 CMake和ndk-build只是编译工具,本次主要介绍ndk-build和CMake的区别,下节课介绍他们的使用。 二、CMake工具介绍 CMake:cross platform make,是跨平台的编译工具 CMake是在AndroidStudio2.2之后引入(目前默认…...

【Linux取经路】解析环境变量,提升系统控制力
文章目录 一、进程优先级1.1 什么是优先级?1.2 为什么会有优先级?1.3 小结 二、Linux系统中的优先级2.1 查看进程优先级2.2 PRI and NI2.3 修改进程优先级2.4 进程优先级的实现原理2.5 一些名词解释 三、环境变量3.1 基本概念3.2 PATH:Linux系…...

TCP编程流程(补充)
目录 1、listen: 2、listen、tcp三次握手 3、 发送缓冲区和接收缓冲区: 4、tcp编程启用多线程 1、listen: 执行listen会创建一个监听队列 listen(sockfd,5) 2、listen、tcp三次握手 三次握手 3、 发送缓冲区和接收缓冲区:…...

每天一道leetcode:433. 最小基因变化(图论中等广度优先遍历)
今日份题目: 基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 A、C、G 和 T 之一。 假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。 例如,&quo…...

【C++】做一个飞机空战小游戏(十)——子弹击落炮弹、炮弹与飞机相撞
[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…...

去除UI切图边缘上多余的线条
最近接到UI切图,放进项目,显示边缘有多余线条,影响UI美观。开始以为切图没切好,实则不是。如图: ->解决: 将该图片资源WrapMode改为Clamp...

Spring高手之路13——BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor解析
文章目录 1. BeanFactoryPostProcessor 概览1.1 解读 BeanFactoryPostProcessor1.2. 如何使用 BeanFactoryPostProcessor 2. BeanDefinitionRegistryPostProcessor 深入探究2.1 解读 BeanDefinitionRegistryPostProcessor2.2 BeanDefinitionRegistryPostProcessor 的执行时机2.…...
【LeetCode动态规划】详解买卖票I~IV,经典dp题型买
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大利润。…...

【深入探究人工智能】:常见机器学习算法总结
文章目录 1、前言1.1 机器学习算法的两步骤1.2 机器学习算法分类 2、逻辑回归算法2.1 逻辑函数2.2 逻辑回归可以用于多类分类2.3 逻辑回归中的系数 3、线性回归算法3.1 线性回归的假设3.2 确定线性回归模型的拟合优度3.3线性回归中的异常值处理 4、支持向量机(SVM&a…...
设计模式之解释器模式详解及实例
1、解释器设计模式概述: 解释器模式(Interpreter Pattern)是一种设计模式,它主要用于描述如何构建一个解释器以解释特定的语言或表达式。该模式定义了一个文法表示和解释器的类结构,用于解释符合该文法规则的语句。解…...

Nodejs沙箱逃逸--总结
一、沙箱逃逸概念 JavaScript和Nodejs之间有什么区别:JavaScript用在浏览器前端,后来将Chrome中的v8引擎单独拿出来为JavaScript单独开发了一个运行环境,因此JavaScript也可以作为一门后端语言,写在后端(服务端&#…...

No115.精选前端面试题,享受每天的挑战和学习
文章目录 变量提升和函数提升的顺序Event Loop封装 FetchAPI,要求超时报错的同时,取消执行的 promise(即不继续执行)强缓存和协商缓存的区别token可以放在cookie里吗? 变量提升和函数提升的顺序 在JavaScript中&#…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...

【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...