当前位置: 首页 > news >正文

Microsoft 图像BERT,基于大规模图文数据的跨模态预训练

视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于许多多模态任务来说,满足这一要求仍然非常困难和昂贵。Microsoft研究人员最近发表的一篇论文提出了一种新的视觉语言预训练模型,用于图像 - 文本联合嵌入,ImageBERT,它在MSCOCO(图像检索任务)和Flickr 30k(文本检索)数据集上都实现了SOTA性能。

与Google的BERT(来自变压器的双向编码器表示)语言模型一样,ImageBERT是基于Transformer的。它采用不同的模态(文本和视觉标记)作为输入,通过嵌入层编码到不同的嵌入中。然后将这些嵌入输入多层双向自注意力转换器,该转换器训练跨模态转换器来建模图像和文本之间的关系。

2023-08-16T04:13:38.png

ImageBERT模型架构

数据的数量和质量对于视觉语言任务的跨模型预训练至关重要,因此研究人员开发了一种弱监督方法,用于从互联网收集大规模图像文本数据,以提高预训练性能。他们的大规模weAk监督图像文本(LAIT)数据集包括10万个视觉语言对(图像+描述),并用于预训练ImageBERT模型。

2023-08-16T04:14:05.png

弱监督数据收集管道

在LAIT之后,研究人员在第二阶段对公共数据集概念标题(最广泛使用的图像文本预训练数据)和SBU标题(SBU标题照片数据集)对模型进行了预训练。该模型同时在研究人员设计的四个任务上进行预训练,以对文本和视觉内容及其相互关系进行建模:

**任务1:**掩蔽语言建模(MLM) –这与BERT培训中的MLM相同。它提出了一个新的预训练目标,并能够训练深度双向嵌入。

**任务2:**屏蔽对象分类 (MOC) – MLM 任务的扩展。

**任务3:**屏蔽区域特征回归 (MRFR) – 与 MOC 类似,此任务还通过更精确的对象特征预测工作对视觉内容进行建模。

**任务4:**图像文本匹配 (ITM) – 学习图像-文本对齐的任务。

实验结果表明,多阶段预训练方法比单阶段预训练方法取得了更好的效果。研究人员还进行了微调,并将预训练的ImageBERT模型与SOTA方法在图像检索和文本检索任务上进行了比较,其中ImageBERT在MSCOCO和Flickr30k数据集上都获得了最佳结果。

2023-08-16T04:14:50.png

研究人员希望他们的新模型和数据集能够进一步推进跨模态预训练的研究和发展。

论文ImageBERT:使用大规模弱监督图像文本数据的跨模态预训练发表在arXiv上。

相关文章:

Microsoft 图像BERT,基于大规模图文数据的跨模态预训练

视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于…...

vue3+elementUI-plus实现select下拉框的虚拟滚动

网上查了几个方案,要不就是不兼容,要不就是不支持vue3, 最终找到一个合适的,并且已上线使用,需要修改一下样式: 代码如下: main.js里引用 import vue3-virtual-scroller/dist/vue3-virtual-scroller.css; …...

学C的第三十四天【程序环境和预处理】

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十三天【C语言文件操作】_高高的胖子的博客-CSDN博客 1 . 程序的翻译环境和执行环境 在ANSI C(C语言标准)的任何一种实现中,存在两个不同的环境。 &#xff0…...

微服务中间件--Ribbon负载均衡

Ribbon负载均衡 a.Ribbon负载均衡原理b.Ribbon负载均衡策略 (IRule)c.Ribbon的饥饿加载 a.Ribbon负载均衡原理 1.发起请求http://userservice/user/1,Ribbon拦截该请求 2.Ribbon通过EurekaServer拉取userservice 3.EurekaServer返回服务列表给Ribbon做负载均衡 …...

字符设备驱动实例(ADC驱动)

四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…...

python基础5——正则、数据库操作

文章目录 一、数据库编程1.1 connect()函数1.2 命令参数1.3 常用语句 二、正则表达式2.1 匹配方式2.2 字符匹配2.3 数量匹配2.4 边界匹配2.5 分组匹配2.6 贪婪模式&非贪婪模式2.7 标志位 一、数据库编程 可以使用python脚本对数据库进行操作,比如获取数据库数据…...

SpringAOP原理:手写动态代理实现

0、基础知识 AOP我们知道,是在不修改源代码的情况下,为代码添加一些新功能的技术。通过动态代理,可以在不修改原始类代码的前提下,对方法进行拦截和增强。 动态代理常用于在不改变原有业务逻辑的情况下,对方法…...

【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板

作品概况 页面数量:共 10 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:旅游度假,生活服务 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为「酒店在线预订」的移动端…...

Android JNI系列详解之CMake和ndk-build编译工具介绍

一、前提 CMake和ndk-build只是编译工具,本次主要介绍ndk-build和CMake的区别,下节课介绍他们的使用。 二、CMake工具介绍 CMake:cross platform make,是跨平台的编译工具 CMake是在AndroidStudio2.2之后引入(目前默认…...

【Linux取经路】解析环境变量,提升系统控制力

文章目录 一、进程优先级1.1 什么是优先级?1.2 为什么会有优先级?1.3 小结 二、Linux系统中的优先级2.1 查看进程优先级2.2 PRI and NI2.3 修改进程优先级2.4 进程优先级的实现原理2.5 一些名词解释 三、环境变量3.1 基本概念3.2 PATH:Linux系…...

TCP编程流程(补充)

目录 1、listen: 2、listen、tcp三次握手 3、 发送缓冲区和接收缓冲区: 4、tcp编程启用多线程 1、listen: 执行listen会创建一个监听队列 listen(sockfd,5) 2、listen、tcp三次握手 三次握手 3、 发送缓冲区和接收缓冲区:…...

每天一道leetcode:433. 最小基因变化(图论中等广度优先遍历)

今日份题目: 基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 A、C、G 和 T 之一。 假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。 例如,&quo…...

【C++】做一个飞机空战小游戏(十)——子弹击落炮弹、炮弹与飞机相撞

[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…...

去除UI切图边缘上多余的线条

最近接到UI切图,放进项目,显示边缘有多余线条,影响UI美观。开始以为切图没切好,实则不是。如图: ->解决: 将该图片资源WrapMode改为Clamp...

Spring高手之路13——BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor解析

文章目录 1. BeanFactoryPostProcessor 概览1.1 解读 BeanFactoryPostProcessor1.2. 如何使用 BeanFactoryPostProcessor 2. BeanDefinitionRegistryPostProcessor 深入探究2.1 解读 BeanDefinitionRegistryPostProcessor2.2 BeanDefinitionRegistryPostProcessor 的执行时机2.…...

【LeetCode动态规划】详解买卖票I~IV,经典dp题型买

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大利润。…...

【深入探究人工智能】:常见机器学习算法总结

文章目录 1、前言1.1 机器学习算法的两步骤1.2 机器学习算法分类 2、逻辑回归算法2.1 逻辑函数2.2 逻辑回归可以用于多类分类2.3 逻辑回归中的系数 3、线性回归算法3.1 线性回归的假设3.2 确定线性回归模型的拟合优度3.3线性回归中的异常值处理 4、支持向量机(SVM&a…...

设计模式之解释器模式详解及实例

1、解释器设计模式概述: 解释器模式(Interpreter Pattern)是一种设计模式,它主要用于描述如何构建一个解释器以解释特定的语言或表达式。该模式定义了一个文法表示和解释器的类结构,用于解释符合该文法规则的语句。解…...

Nodejs沙箱逃逸--总结

一、沙箱逃逸概念 JavaScript和Nodejs之间有什么区别:JavaScript用在浏览器前端,后来将Chrome中的v8引擎单独拿出来为JavaScript单独开发了一个运行环境,因此JavaScript也可以作为一门后端语言,写在后端(服务端&#…...

No115.精选前端面试题,享受每天的挑战和学习

文章目录 变量提升和函数提升的顺序Event Loop封装 FetchAPI,要求超时报错的同时,取消执行的 promise(即不继续执行)强缓存和协商缓存的区别token可以放在cookie里吗? 变量提升和函数提升的顺序 在JavaScript中&#…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

如何为服务器生成TLS证书

TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...