微服务中间件--分布式事务
分布式事务
- a.理论基础
- 1) CAP定理
- 2) BASE理论
 
- b.Seata
- 1) XA模式
- 1.a) 实现XA模式
 
- 2) AT模式
- 3) TCC模式
- 3.a) 代码实现
 
- 4) Saga模式
- 5) 四种模式对比
- 6) TC的异地多机房容灾架构
 
 
a.理论基础
1) CAP定理
分布式系统有三个指标:
- Consistency(一致性): 用户访问分布式系统中的任意节点,得到的数据必须一致
- Availability(可用性): 用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝
- Partition tolerance (分区容错性) - Partition(分区): 因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区
- tolerance(容错): 在集群出现分区时,整个系统也要持续对外提供服务
 
分布式系统无法同时满足这三个指标,这个结论就叫做 CAP 定理。

2) BASE理论
BASE理论是对CAP的一种解决思路,包含三个思想:
- Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用
- **Soft State(软状态):**在一定时间内,允许出现中间状态,比如临时的不一致状态
- **Eventually Consistent(最终一致性):**虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致
而分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论:
- AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致
- CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
b.Seata
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。
Seata架构
Seata事务管理中有三个重要的角色:
- TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚
- TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务
- RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚
Seata提供了四种不同的分布式事务解决方案:
- XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
- TCC模式:最终一致的分阶段事务模式,有业务侵入
- AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
- SAGA模式:长事务模式,有业务侵入
1) XA模式
XA模式原理
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
seata的XA模式:seata的XA模式做了一些调整,但大体相似:
RM一阶段的工作:
- 1.注册分支事务到TC
- 2.执行分支业务sql,但不提交
- 3.报告执行状态到TC
TC二阶段的工作:
- TC检测各分支事务执行状态 - a.如果都成功,通知所有RM提交事务
- b.如果有失败,通知所有RM回滚事务
 
RM二阶段的工作:
- 接收TC指令,提交或回滚事务
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1fBJtCFn-1692258967052)(C:\Users\captaindeng\AppData\Roaming\Typora\typora-user-images\image-20230816073154114.png)]
XA模式的优点是什么?
- 事务的强一致性,满足ACID原则。
- 常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
1.a) 实现XA模式
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
1.修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:data-source-proxy-mode: XA
2.给发起全局事务的入口方法添加@GlobalTransactional注解,本例中是OrderServiceImpl中的create方法:
@Override
@GlobalTransactional
public Long create(Order order) {// 创建订单orderMapper.insert(order);// 扣余额 ...略 // 扣减库存 ...略return order.getId();
}
3.重启服务并测试
2) AT模式
AT模式原理
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
阶段一RM的工作:
- 1.注册分支事务
- 2.记录undo-log(数据快照)
- 3.执行业务sql并提交
- 4.报告事务状态
阶段二提交时RM的工作:
- 删除undo-log即可
阶段二回滚时RM的工作:
- 根据undo-log恢复数据到更新前
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9Jhwpq0e-1692258967053)(C:\Users\captaindeng\AppData\Roaming\Typora\typora-user-images\image-20230816083429256.png)]
AT模式与XA模式最大的区别是什么?
- XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
- XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
- XA模式强一致;AT模式最终一致
AT模式的存在脏写问题
AT模式的优点:
- 一阶段完成直接提交事务,释放数据库资源,性能比较好
- 利用全局锁实现读写隔离
- 没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
- 两阶段之间属于软状态,属于最终一致
- 框架的快照功能会影响性能,但比XA模式要好很多
3) TCC模式
TCC模式原理
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
- Try:资源的检测和预留
- Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功
- Cancel:预留资源释放,可以理解为try的反向操作


TCC的优点是什么?
- 一阶段完成直接提交事务,释放数据库资源,性能好
- 相比AT模型,无需生成快照,无需使用全局锁,性能最强
- 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
- 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
- 软状态,事务是最终一致
- 需要考虑Confirm和Cancel的失败情况,做好幂等处理
3.a) 代码实现
案例:改造account-service服务,利用TCC实现分布式事务
需求如下:
- 修改account-service,编写try、confirm、cancel逻辑
- try业务:添加冻结金额,扣减可用金额
- confirm业务:删除冻结金额
- cancel业务:删除冻结金额,恢复可用金额
- 保证confirm、cancel接口的幂等性
- 允许空回滚
- 拒绝业务悬挂
TCC的空回滚和业务悬挂
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
对于已经空回滚的业务,如果以后继续执行try,就永远不可能confirm或cancel,这就是业务悬挂。应当阻止执行空回滚后的try操作,避免悬挂


声明TCC接口
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,语法如下:

在Account-service中的service下定义接口
@LocalTCC
public interface AccountTCCService {@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,@BusinessActionContextParameter(paramName = "money") int money);boolean confirm(BusinessActionContext ctx);boolean cancel(BusinessActionContext ctx);
}
在Account-service中的service的impl下实现该方法
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {@Autowiredprivate AccountMapper accountMapper;@Autowiredprivate AccountFreezeMapper freezeMapper;@Override@Transactionalpublic void deduct(String userId, int money) {// 0.获取事务idString xid = RootContext.getXID();// 1.判断freeze中是否有冻结金额,如果有,一定是CANCEL执行过,要拒绝业务AccountFreeze oldFreeze = freezeMapper.selectById(userId);if (oldFreeze != null){// CANCEL执行过,要拒绝业务return;}// 1.扣减可用余额accountMapper.deduct(userId, money);// 2.记录冻结金额,记录事务状态AccountFreeze freeze = new AccountFreeze();freeze.setUserId(userId);freeze.setFreezeMoney(money);freeze.setState(AccountFreeze.State.TRY);freeze.setXid(xid);freezeMapper.insert(freeze);}@Overridepublic boolean confirm(BusinessActionContext ctx) {// 1.获取事务idString xid = ctx.getXid();// 2.根据事务id删除冻结记录int count = freezeMapper.deleteById(xid);return count == 1;}@Overridepublic boolean cancel(BusinessActionContext ctx) {// 0.查询冻结记录String xid = ctx.getXid();String userId = ctx.getActionContext("userId").toString();AccountFreeze freeze = freezeMapper.selectById(xid);// 1.空回滚的判断,判断freeze是否为null,为Null证明try没执行,需要空回滚if (freeze == null){// 证明try没执行,需要空回滚freeze = new AccountFreeze();freeze.setUserId(userId);freeze.setFreezeMoney(0);freeze.setState(AccountFreeze.State.CANCEL);freeze.setXid(xid);freezeMapper.insert(freeze);}// 2.幂等判断if (freeze.getState().equals(AccountFreeze.State.CANCEL)){// 已经处理过一次CANCEL,无需重复处理return true;}// 1.恢复可用余额accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());// 2.将冻结金额清零,将状态改为CANCELfreeze.setFreezeMoney(0);freeze.setState(AccountFreeze.State.CANCEL);int count = freezeMapper.updateById(freeze);return count == 1;}
}
4) Saga模式
Saga模式是Seata提供的长事务解决方案。也分为两个阶段:
- 一阶段:直接提交本地事务
- 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
Saga模式优点:
- 事务参与者可以基于事件驱动实现异步调用,吞吐高
- 一阶段直接提交事务,无锁,性能好
- 不用编写TCC中的三个阶段,实现简单
缺点:
- 软状态持续时间不确定,时效性差
- 没有锁,没有事务隔离,会有脏写

5) 四种模式对比
| XA | AT | TCC | SAGA | |
|---|---|---|---|---|
| 一致性 | 强一致 | 弱一致 | 弱一致 | 最终一致 | 
| 隔离性 | 完全隔离 | 基于全局锁隔离 | 基于资源预留隔离 | 无隔离 | 
| 代码侵入 | 无 | 无 | 有,要编写三个接口 | 有,要编写状态机和补偿业务 | 
| 性能 | 差 | 好 | 非常好 | 非常好 | 
| 场景 | 对一致性、隔离性有高要求的业务 | 基于关系型数据库的大多数分布式事务场景都可以 | 对性能要求较高的事务。有非关系型数据库要参与的事务。 | 业务流程长、业务流程多参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口 | 
6) TC的异地多机房容灾架构
TC服务作为Seata的核心服务,一定要保证高可用和异地容灾。

现在,将seata目录复制一份,起名为seata2
1.修改seata2/conf/registry.conf内容如下:
registry {# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等type = "nacos"nacos {# seata tc 服务注册到 nacos的服务名称,可以自定义application = "seata-tc-server"serverAddr = "127.0.0.1:8848"group = "DEFAULT_GROUP"namespace = ""cluster = "HZ"username = "nacos"password = "nacos"}
}config {# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置type = "nacos"# 配置nacos地址等信息nacos {serverAddr = "127.0.0.1:8848"namespace = ""group = "SEATA_GROUP"username = "nacos"password = "nacos"dataId = "seataServer.properties"}
}
进入seata2/bin目录,然后运行命令:
seata-server.bat -p 8092
打开nacos控制台,查看服务列表:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DnkkrX41-1692258967053)(F:\itheima\4.微服务开发框架\1.微服务开发框架\2.高级篇\day02-分布式事务\资料\assets\image-20210624151150840.png)]
点进详情查看:

2.将事务组映射配置到nacos
接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。
新建一个配置:

配置的内容如下:
# 事务组映射关系
service.vgroupMapping.seata-demo=SHservice.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100
3.微服务读取nacos配置
接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:
seata:config:type: nacosnacos:server-addr: 127.0.0.1:8848username: nacospassword: nacosgroup: SEATA_GROUPdata-id: client.properties
重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。
相关文章:
 
微服务中间件--分布式事务
分布式事务 a.理论基础1) CAP定理2) BASE理论 b.Seata1) XA模式1.a) 实现XA模式 2) AT模式3) TCC模式3.a) 代码实现 4) Saga模式5) 四种模式对比6) TC的异地多机房容灾架构 a.理论基础 1) CAP定理 分布式系统有三个指标: Consistency(一致性ÿ…...
 
计算机网络(9) --- 数据链路层与MAC帧
计算机网络(8) --- IP与IP协议_哈里沃克的博客-CSDN博客IP与IP协议https://blog.csdn.net/m0_63488627/article/details/132155460?spm1001.2014.3001.5502 目录 1.MAC帧 1.MAC地址 2.MAC帧报头 3.资源碰撞 4.MTU 1.对IP协议的影响 2.对UDP协议…...
 
【学会动态规划】环绕字符串中唯一的子字符串(25)
目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 动态规划怎么学? 学习一个算法没有捷径,更何况是学习动态规划, 跟我…...
 
CNN卷积详解(三)
一、卷积层的计算 4 ∗ * ∗ 4的输入矩阵 I I I 和 3 ∗ * ∗ 3 的卷积核 K K K: 在步长(stride)为 1 时,输出的大小为 ( 4 − 3 1 ) ( 4 − 3 1) 计算公式: ● 输入图片矩阵 I I I 大小: w w w w ww ●…...
 
使用 Amazon Redshift Serverless 和 Toucan 构建数据故事应用程序
这是由 Toucan 的解决方案工程师 Django Bouchez与亚马逊云科技共同撰写的特约文章。 带有控制面板、报告和分析的商业智能(BI,Business Intelligence)仍是最受欢迎的数据和分析使用场景之一。它为业务分析师和经理提供企业的过去状态和当前状…...
CentOS 上快速安装包管理工具Conda
要在 CentOS 上安装 Conda,您可以按照以下步骤进行操作: 1. 下载 Miniconda 或 Anaconda 安装脚本: Miniconda:适用于轻量级安装的 Miniconda 版本。 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.…...
 
opencv-手势识别
# HandTrackingModule.py import cv2 import mediapipe as mpclass HandDetector:"""使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。"""…...
【SA8295P 源码分析】10 - HQX Display(OpenWFD)qcdisplaycfg_ADP_STAR_LA.xml 配置文件解析
【SA8295P 源码分析】10 - HQX Display(OpenWFD)qcdisplaycfg_ADP_STAR_LA.xml 配置文件解析 一、HQX Display 介绍1.1 OpenWF Display Driver二、HQX Display 配置文件参数解析2.1 qcdisplaycfg.xml 配置文件2.1 配置两个 DPUs in QNX2.1.1 配置 graphics_ADP_STAR.conf : …...
达梦数据库权限和预定角色介绍
概述 本文对达梦数据库数据库和对象权限及DM预定义角色及角色创建进行介绍。 1.权限管理 用户权限有两类:数据库权限和对象权限。 数据库权限主要是指针对数据库对象的创建、删除、修改的权限,对数据库备份等权限。 数据库权限一般由 SYSDBA、SYSAU…...
 
Python编程从入门到实践_8-8 用户的专辑_答案
Python编程从入门到实践_8-8 用户的专辑_答案 我也看了一些其他人的答案,很多的答案存在问题,每次调用函数 make_album() 后生成一个专辑字典会覆盖上次调用函数 make_album() 生成的字典,不符合题意。 我采取的解决方案是添加一个空列表 …...
 
HummingBird 基于 Go 开源超轻量级 IoT 物联网平台
蜂鸟(HummingBird) 是 Go 语言实现的超轻量级物联网开发平台,包含设备接入、产品管理、物模型、告警中心、规则引擎等丰富功能模块。系统采用GoLang编写,占用内存极低, 单物理机可实现百设备的连接。 在数据存储上&…...
10.小程序样式
样式 css部分样式不支持,并且添加了rpx属性,小程序开发的时候应该使用rpx,而不是px,因为rpx是将移动端的屏幕大小分为750份,会自动按设备的大小去适配;我们在开发时应该以iphone6为基准的设备进行开发&…...
 
Flink 流式读写文件、文件夹
文章目录 一、flink 流式读取文件夹、文件二、flink 写入文件系统——StreamFileSink三、查看完整代码 一、flink 流式读取文件夹、文件 Apache Flink针对文件系统实现了一个可重置的source连接器,将文件看作流来读取数据。如下面的例子所示: StreamExe…...
【SA8295P 源码分析】64 - QNX 与 Android GVM 显示 Dump 图片方法汇总
【SA8295P 源码分析】64 - QNX 与 Android GVM 显示 Dump 图片方法汇总 一、QNX侧1.1 surfacedump 功能1.2 screenshot 功能二、Android GVM 侧2.1 screencap -p 导出 PNG 图片2.2 screencap 不加 -p 参数,导出 RGB32 图片2.3 dumpsys SurfaceFlinger --display-id 方法系列文…...
 
字符串旋转(1)
目录 编辑 题目要求😍: 题目内容❤: 题目分析📚: 主函数部分📕:编辑 方法一🐒: 方法二🐒🐒: 方法三🐒…...
【SA8295P 源码分析】13 - Android GVM 虚拟机 QUPv3 UART / SPI / I2C功能配置及透传配置
【SA8295P 源码分析】13 - Android GVM 虚拟机 QUPv3 UART / SPI / I2C功能配置及透传配置 一、QUP v3 介绍二、QUP v3 UART 功能配置2.1 TrustZone 域 Uart 资源权限配置:以 QUPV3_0_SE2 为例2.2 QNX Host 域关闭 Uart 资源:以 QUPV3_0_SE2 为例2.3 Android Kernel 域使能 U…...
 
STM32 F103C8T6学习笔记10:OLED显示屏GIF动图取模—简易时钟—动图手表的制作~
今日尝试做一款有动图的OLED实时时钟,本文需要现学一个OLED的GIF动图取模 其余需要的知识点有不会的可以去我 STM32 F103C8T6学习笔记 系列专栏自己查阅把,闲话不多,直接开肝~~~ 文章提供源码,测试工程下载,测试效…...
 
大数据课程K3——Spark的常用案例
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Spark的常用案例——WordCount; ⚪ 掌握Spark的常用案例——求平均值; ⚪ 掌握Spark的常用案例——求最大值和最小值; ⚪ 掌握Spark的常用案例——TopK; ⚪ 掌握Spark的常用案例…...
85-最大矩阵
题目 给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。 示例 1: 输入:matrix [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,…...
8.3 【C语言】通过指针引用数组
8.3.1 数组元素的指针 所谓数组元素的指针就是数组元素的地址。 可以用一个指针变量指向一个数组元素。例如: int a[10]{1,3,5,7,9,11,13,15,17,19}; int *p; p&a[0]; 引用数组元素可以用下标法,也可以用指针法…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
 
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
 
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
 
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
 
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
 
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
 
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
 
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
