opencv-手势识别
# HandTrackingModule.py
import cv2
import mediapipe as mpclass HandDetector:"""使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。"""def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon = 0.5):""":param mode: 在静态模式下,对每个图像进行检测:param maxHands: 要检测的最大手数:param detectionCon: 最小检测置信度:param minTrackCon: 最小跟踪置信度"""self.mode = modeself.maxHands = maxHandsself.modelComplex = Falseself.detectionCon = detectionConself.minTrackCon = minTrackCon# 初始化手部识别模型self.mpHands = mp.solutions.handsself.hands = self.mpHands.Hands(self.mode, self.maxHands, self.modelComplex,self.detectionCon, self.minTrackCon)self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器self.tipIds = [4, 8, 12, 16, 20] # 指尖列表self.fingers = []self.lmList = []def findHands(self, img, draw=True):"""从图像(BRG)中找到手部。:param img: 用于查找手的图像。:param draw: 在图像上绘制输出的标志。:return: 带或不带图形的图像"""imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式,self.results = self.hands.process(imgRGB)if self.results.multi_hand_landmarks:for handLms in self.results.multi_hand_landmarks:if draw:self.mpDraw.draw_landmarks(img, handLms,self.mpHands.HAND_CONNECTIONS)return imgdef findPosition(self, img, handNo=0, draw=True):"""查找单手的地标并将其放入列表中像素格式。还可以返回手部周围的边界框。:param img: 要查找的主图像:param handNo: 如果检测到多只手,则为手部id:param draw: 在图像上绘制输出的标志。(默认绘制矩形框):return: 像素格式的手部关节位置列表;手部边界框"""xList = []yList = []bbox = []bboxInfo =[]self.lmList = []if self.results.multi_hand_landmarks:myHand = self.results.multi_hand_landmarks[handNo]for id, lm in enumerate(myHand.landmark):h, w, c = img.shapepx, py = int(lm.x * w), int(lm.y * h)xList.append(px)yList.append(py)self.lmList.append([px, py])if draw:cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED)xmin, xmax = min(xList), max(xList)ymin, ymax = min(yList), max(yList)boxW, boxH = xmax - xmin, ymax - yminbbox = xmin, ymin, boxW, boxHcx, cy = bbox[0] + (bbox[2] // 2), \bbox[1] + (bbox[3] // 2)bboxInfo = {"id": id, "bbox": bbox,"center": (cx, cy)}if draw:cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),(bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),(0, 255, 0), 2)return self.lmList, bboxInfodef fingersUp(self):"""查找列表中打开并返回的手指数。会分别考虑左手和右手:return:竖起手指的列表"""if self.results.multi_hand_landmarks:myHandType = self.handType()fingers = []# Thumbif myHandType == "Right":if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]:fingers.append(1)else:fingers.append(0)else:if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]:fingers.append(1)else:fingers.append(0)# 4 Fingersfor id in range(1, 5):if self.lmList[self.tipIds[id]][1] < self.lmList[self.tipIds[id] - 2][1]:fingers.append(1)else:fingers.append(0)return fingersdef handType(self):"""检查传入的手部是左还是右:return: "Right" 或 "Left""""if self.results.multi_hand_landmarks:if self.lmList[17][0] < self.lmList[5][0]:return "Right"else:return "Left"
import cv2
from HandTrackingModule import HandDetectorclass Main:def __init__(self):self.camera = cv2.VideoCapture(0,cv2.CAP_DSHOW)self.camera.set(3, 1280)self.camera.set(4, 720)def Gesture_recognition(self):while True:self.detector = HandDetector()frame, img = self.camera.read()img = self.detector.findHands(img)lmList, bbox = self.detector.findPosition(img)if lmList:x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]x1, x2, x3, x4, x5 = self.detector.fingersUp()if (x2 == 1 and x3 == 1) and (x4 == 0 and x5 == 0 and x1 == 0):cv2.putText(img, "2_TWO", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)elif (x2 == 1 and x3 == 1 and x4 == 1) and (x1 == 0 and x5 == 0):cv2.putText(img, "3_THREE", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)elif (x2 == 1 and x3 == 1 and x4 == 1 and x5 == 1) and (x1 == 0):cv2.putText(img, "4_FOUR", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)elif x1 == 1 and x2 == 1 and x3 == 1 and x4 == 1 and x5 == 1:cv2.putText(img, "5_FIVE", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)elif x2 == 1 and (x1 == 0, x3 == 0, x4 == 0, x5 == 0):cv2.putText(img, "1_ONE", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)elif x1 and (x2 == 0, x3 == 0, x4 == 0, x5 == 0):cv2.putText(img, "GOOD!", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,(0, 0, 255), 3)cv2.imshow("camera", img)if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:breakcv2.waitKey(1)if cv2.waitKey(1) & 0xFF == ord("q"):breakif __name__ == '__main__':Solution = Main()Solution.Gesture_recognition()

相关文章:
opencv-手势识别
# HandTrackingModule.py import cv2 import mediapipe as mpclass HandDetector:"""使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。"""…...
【SA8295P 源码分析】10 - HQX Display(OpenWFD)qcdisplaycfg_ADP_STAR_LA.xml 配置文件解析
【SA8295P 源码分析】10 - HQX Display(OpenWFD)qcdisplaycfg_ADP_STAR_LA.xml 配置文件解析 一、HQX Display 介绍1.1 OpenWF Display Driver二、HQX Display 配置文件参数解析2.1 qcdisplaycfg.xml 配置文件2.1 配置两个 DPUs in QNX2.1.1 配置 graphics_ADP_STAR.conf : …...
达梦数据库权限和预定角色介绍
概述 本文对达梦数据库数据库和对象权限及DM预定义角色及角色创建进行介绍。 1.权限管理 用户权限有两类:数据库权限和对象权限。 数据库权限主要是指针对数据库对象的创建、删除、修改的权限,对数据库备份等权限。 数据库权限一般由 SYSDBA、SYSAU…...
Python编程从入门到实践_8-8 用户的专辑_答案
Python编程从入门到实践_8-8 用户的专辑_答案 我也看了一些其他人的答案,很多的答案存在问题,每次调用函数 make_album() 后生成一个专辑字典会覆盖上次调用函数 make_album() 生成的字典,不符合题意。 我采取的解决方案是添加一个空列表 …...
HummingBird 基于 Go 开源超轻量级 IoT 物联网平台
蜂鸟(HummingBird) 是 Go 语言实现的超轻量级物联网开发平台,包含设备接入、产品管理、物模型、告警中心、规则引擎等丰富功能模块。系统采用GoLang编写,占用内存极低, 单物理机可实现百设备的连接。 在数据存储上&…...
10.小程序样式
样式 css部分样式不支持,并且添加了rpx属性,小程序开发的时候应该使用rpx,而不是px,因为rpx是将移动端的屏幕大小分为750份,会自动按设备的大小去适配;我们在开发时应该以iphone6为基准的设备进行开发&…...
Flink 流式读写文件、文件夹
文章目录 一、flink 流式读取文件夹、文件二、flink 写入文件系统——StreamFileSink三、查看完整代码 一、flink 流式读取文件夹、文件 Apache Flink针对文件系统实现了一个可重置的source连接器,将文件看作流来读取数据。如下面的例子所示: StreamExe…...
【SA8295P 源码分析】64 - QNX 与 Android GVM 显示 Dump 图片方法汇总
【SA8295P 源码分析】64 - QNX 与 Android GVM 显示 Dump 图片方法汇总 一、QNX侧1.1 surfacedump 功能1.2 screenshot 功能二、Android GVM 侧2.1 screencap -p 导出 PNG 图片2.2 screencap 不加 -p 参数,导出 RGB32 图片2.3 dumpsys SurfaceFlinger --display-id 方法系列文…...
字符串旋转(1)
目录 编辑 题目要求😍: 题目内容❤: 题目分析📚: 主函数部分📕:编辑 方法一🐒: 方法二🐒🐒: 方法三🐒…...
【SA8295P 源码分析】13 - Android GVM 虚拟机 QUPv3 UART / SPI / I2C功能配置及透传配置
【SA8295P 源码分析】13 - Android GVM 虚拟机 QUPv3 UART / SPI / I2C功能配置及透传配置 一、QUP v3 介绍二、QUP v3 UART 功能配置2.1 TrustZone 域 Uart 资源权限配置:以 QUPV3_0_SE2 为例2.2 QNX Host 域关闭 Uart 资源:以 QUPV3_0_SE2 为例2.3 Android Kernel 域使能 U…...
STM32 F103C8T6学习笔记10:OLED显示屏GIF动图取模—简易时钟—动图手表的制作~
今日尝试做一款有动图的OLED实时时钟,本文需要现学一个OLED的GIF动图取模 其余需要的知识点有不会的可以去我 STM32 F103C8T6学习笔记 系列专栏自己查阅把,闲话不多,直接开肝~~~ 文章提供源码,测试工程下载,测试效…...
大数据课程K3——Spark的常用案例
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Spark的常用案例——WordCount; ⚪ 掌握Spark的常用案例——求平均值; ⚪ 掌握Spark的常用案例——求最大值和最小值; ⚪ 掌握Spark的常用案例——TopK; ⚪ 掌握Spark的常用案例…...
85-最大矩阵
题目 给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。 示例 1: 输入:matrix [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,…...
8.3 【C语言】通过指针引用数组
8.3.1 数组元素的指针 所谓数组元素的指针就是数组元素的地址。 可以用一个指针变量指向一个数组元素。例如: int a[10]{1,3,5,7,9,11,13,15,17,19}; int *p; p&a[0]; 引用数组元素可以用下标法,也可以用指针法…...
基于Flink CDC实时同步PostgreSQL与Tidb【Flink SQL Client模式下亲测可行,详细教程】
文章目录 一、PostgreSQL作为数据来源(source),由flink读取1.postgre安装与配置2.flink安装与配置3.flink cdc postgre配置3.1 postgre配置(for flink cdc)3.2 flink cdc postgres的jar包下载 4.flink cdc postgre测试…...
Vue-5.编译器Idea
Vue专栏(帮助你搭建一个优秀的Vue架子) Vue-1.零基础学习Vue Vue-2.Nodejs的介绍和安装 Vue-3.Vue简介 Vue-4.编译器VsCode Vue-5.编译器Idea Vue-6.编译器webstorm Vue-7.命令创建Vue项目 Vue-8.Vue项目配置详解 Vue-9.集成(.editorconfig、…...
qiuzhiji3
本篇想介绍一下慧与,这里的工作氛围和企业文化令人难忘,希望更多人了解它 也想探讨一下不同的文化铸就的不同企业,究竟有哪些差别。 本篇将从我个人角度出发描述慧与。 2022/3/16至2023/7/31 本篇初次写于2023年8月20日 说起来在毕业之前那段…...
JVM——垃圾回收(垃圾回收算法+分代垃圾回收+垃圾回收器)
1.如何判断对象可以回收 1.1引用计数法 只要一个对象被其他对象所引用,就要让该对象的技术加1,某个对象不再引用其,则让它计数减1。当计数变为0时就可以作为垃圾被回收。 有一个弊端叫做循环引用,两个的引用计数都是1ÿ…...
QT TLS initialization failed问题(已解决) QT基础入门【网络编程】openssl
问题: qt.network.ssl: QSslSocket::connectToHostEncrypted: TLS initialization failed 这个问题的出现主要是使用了https请求:HTTPS ≈ HTTP + SSL,即有了加密层的HTTP 所以Qt 组件库需要OpenSSL dll 文件支持HTTPS 解决: 1.加入以下两行代码获取QT是否支持opensll以…...
SpringMVC之获取请求参数
文章目录 前言一、通过ServletAPI获取二、通过控制器方法的形参获取请求参数三、注解1.RequestParam2.RequestHeader3.CookieValue前面的代码总和:4.通过POJO获取请求参数 三、解决获取请求参数的乱码问题总结 前言 下面用到了thymeleaf,不知道的可以看…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
