当前位置: 首页 > news >正文

深入浅出Pytorch函数——torch.nn.init.dirac_

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

该函数用 Dirac δ \text{Dirac}\delta Diracδ 函数来填充3-5维输入张量或变量,在卷积层尽可能多的保存输入通道特征。

语法

torch.nn.init.dirac_(tensor, groups=1)

参数

  • tensor:[Tensor] 一个3~5维张量torch.Tensor
  • groups:[int] conv层中的组数,默认值为1

返回值

一个torch.Tensor且参数tensor也会更新

实例

w = torch.empty(3, 16, 5, 5)
nn.init.dirac_(w)
w = torch.empty(3, 24, 5, 5)
nn.init.dirac_(w, 3)

函数实现

def dirac_(tensor, groups=1):r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Diracdelta function. Preserves the identity of the inputs in `Convolutional`layers, where as many input channels are preserved as possible. In caseof groups>1, each group of channels preserves identityArgs:tensor: a {3, 4, 5}-dimensional `torch.Tensor`groups (int, optional): number of groups in the conv layer (default: 1)Examples:>>> w = torch.empty(3, 16, 5, 5)>>> nn.init.dirac_(w)>>> w = torch.empty(3, 24, 5, 5)>>> nn.init.dirac_(w, 3)"""dimensions = tensor.ndimension()if dimensions not in [3, 4, 5]:raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")sizes = tensor.size()if sizes[0] % groups != 0:raise ValueError('dim 0 must be divisible by groups')out_chans_per_grp = sizes[0] // groupsmin_dim = min(out_chans_per_grp, sizes[1])with torch.no_grad():tensor.zero_()for g in range(groups):for d in range(min_dim):if dimensions == 3:  # Temporal convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1elif dimensions == 4:  # Spatial convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2] = 1else:  # Volumetric convolutiontensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,tensor.size(3) // 2, tensor.size(4) // 2] = 1return tensor

相关文章:

深入浅出Pytorch函数——torch.nn.init.dirac_

分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

[Go版]算法通关村第十三关青铜——数字数学问题之统计问题、溢出问题、进制问题

这里写自定义目录标题 数字统计专题题目:数组元素积的符号思路分析:无需真计算,只需判断负数个数是奇是偶复杂度:时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( 1 ) O(1) O(1)Go代码 题目:阶乘尾数0的个数思路分析&am…...

GPT-4一纸重洗:从97.6%降至2.4%的巨大挑战

斯坦福大学和加州大学伯克利分校合作进行的一项 “How Is ChatGPTs Behavior Changing Over Time?” 研究表明,随着时间的推移,GPT-4 的响应能力非但没有提高,反而随着语言模型的进一步更新而变得更糟糕。 研究小组评估了 2023 年 3 月和 20…...

大数据Flink学习圣经:一本书实现大数据Flink自由

学习目标:三栖合一架构师 本文是《大数据Flink学习圣经》 V1版本,是 《尼恩 大数据 面试宝典》姊妹篇。 这里特别说明一下:《尼恩 大数据 面试宝典》5个专题 PDF 自首次发布以来, 已经汇集了 好几百题,大量的大厂面试…...

什么是微服务?

2.微服务的优缺点 优点 单一职责原则每个服务足够内聚,足够小,代码容易理解,这样能聚焦一个指定的业务功能或业务需求;开发简单,开发效率提高,一个服务可能就是专一的只干一件事;微服务能够被小…...

【C++入门到精通】C++入门 —— 容器适配器、stack和queue(STL)

阅读导航 前言stack1. stack概念2. stack特点3. stack使用 queue1. queue概念2. queue特点3. queue使用 容器适配器1. 什么是适配器2. STL标准库中stack和queue的底层结构3. STL标准库中对于stack和queue的模拟实现⭕stack的模拟实现⭕stack的模拟实现 总结温馨提示 前言 文章…...

系统架构设计专业技能 · 软件工程之需求工程

系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...

2023国赛数学建模E题思路模型代码 高教社杯

本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C++)

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的Bufferlist序列(C) Baumer工业相机Baumer工业相机的Bufferlist序列功能的技术背景CameraExplorer如何查看相机Bufferlist功能在BGAPI SDK里通过函数设置相机Bufferlist参数 Baumer工业相机通过BGAP…...

从 Ansible Galaxy 使用角色

从 Ansible Galaxy 使用角色 根据下列要求,创建一个名为 /home/curtis/ansible/roles.yml 的 playbook : playbook 中包含一个 play, 该 play 在 balancers 主机组中的主机上运行并将使用 balancer 角色。 此角色配置一项服务,以…...

ROS与STM32通信(二)-pyserial

文章目录 下位机上位机自定义msg消息发布订阅 ROS与STM32通信一般分为两种, STM32上运行ros节点实现通信使用普通的串口库进行通信,然后以话题方式发布 第一种方式具体实现过程可参考上篇文章ROS与STM32通信-rosserial,上述文章中的收发频率…...

[oneAPI] 使用Bert进行中文文本分类

[oneAPI] 使用Bert进行中文文本分类 Intel Optimization for PyTorch基于BERT的文本分类模型数据预处理数据集定义tokenize建立词表转换为Token序列padding处理与mask 模型 结果OneAPI参考资料 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517…...

【数据治理】什么是数据库归档

文章目录 前言什么是数据归档 前言 如果您的日常工作中需要对数据库进行管理,那您肯定已经或即将遭遇这样的困惑:随着业务的蓬勃发展,数据库文件的大小逐渐增大,您需要为在线业务提供越来越大的高性能磁盘容量,但数据…...

AI代码补全 案例 - 阿里云智能编码插件Cosy

文章目录 Cosy简介Cosy安装Marketplace安装【推荐】离线安装安装效果Cosy功能体验代码智能补全代码示例搜索API搜索自然语言搜索控制台异常搜索优质文档搜索Cosy体验有感参考Cosy简介 阿里云智能编码插件(Alibaba Cloud AI Coding Assistant)是一款AI编程助手,提供代码智能…...

【Linux】进程信号篇Ⅰ:信号的产生(signal、kill、raise、abort、alarm)、信号的保存(core dump)

文章目录 一、 signal 函数:用户自定义捕捉信号二、信号的产生1. 通过中断按键产生信号2. 调用系统函数向进程发信号2.1 kill 函数:给任意进程发送任意信号2.2 raise 函数:给调用进程发送任意信号2.3 abort 函数:给调用进程发送 6…...

漏洞指北-VulFocus靶场专栏-中级03

漏洞指北-VulFocus靶场专栏-初级03 中级009 🌸gxlcms-cve_2018_14685🌸step1:安装系统 密码rootstep2 进入后台页面 账号密码:admin amdin888step3 查看详细 有phpinfo() 中级010 🌸dedecms-cnvd_2018_01221&#x1f3…...

【leetcode 力扣刷题】数组交集(数组、set、map都可实现哈希表)

数组交集 349. 两个数组的交集排序+双指针数组实现哈希表unordered_setunordered_map 350. 两个数组的交集Ⅱ排序 双指针数组实现哈希表unordered_map 349. 两个数组的交集 题目链接:349. 两个数组的交集 题目内容如下,理解题意&#xff1a…...

MySQL 8.0.31 登录提示caching_sha2_password问题解决方法

MySQL 8.0.31 登录提示caching_sha2_password问题解决方法 MySQL 8.0.31 使用了 caching_sha2_password 作为默认的身份验证插件,这可能导致一些旧的客户端和库无法连接到服务器。以下是一些解决此类问题的常见步骤和建议: 确保MySQL服务正在运行&#…...

[Google] DeepMind Gemini: 新一代LLM结合AlphaGo技术将力压 GPT-4|未来 AI 领域的新巨头

2016年,Google DeepMind 人工智能实验室孕育出的 AlphaGo 人工智能程序在围棋赛场上一举击败冠军选手,成为历史的见证者。如今,DeepMind 联合创始人兼首席执行官 Demis Hassabis 表示,他们的工程师正借鉴 AlphaGo 的技术研发一款名…...

Maven高级

目录 一、分模块开发与设计 1. 分模块开发的意义 2. 分模块开发(模块拆分) (1)创建Maven模块 (2)书写模块代码 (3)通过maven指令安装模块到本地仓库(install指令&…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...