opencv进阶12-EigenFaces 人脸识别
EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。
基本原理
在现实世界中,很多信息的表示是有冗余的。例如,表 23-2 所列出的一组圆的参数中就存在冗余信息。

在表 23-2 所示的参数中,各个参数之间存在着非常强的相关性:
- 直径 = 2*半径
- 周长 = 2π半径
- 面积 = π半径半径
可以看到,直径、周长和面积都可以通过半径计算得到。
在进行数据分析时,如果我们希望更直观地看到这些参数的值,就需要获取所有字段的值。
但是,在比较圆的面积大小时,仅使用半径就足够了,此时其他信息对于我们来说就是“冗余”的。
因此,我们可以理解“半径”就是表 23-2 所列数据中的“主成分”,我们将“半径”从上述数据中提取出来供后续分析使用,就实现了“降维”。
当然,上面例子的数据非常简单、易于理解,而在大多数情况下,我们要处理的数据是比较复杂的。很多时候,我们可能无法直接判断哪些数据是关键的“主成分”,所以就要通过 PCA方法将复杂数据内的“主成分”分析出来。
EigenFaces 就是对原始数据使用 PCA 方法进行降维,获取其中的主成分信息,从而实现人脸识别的方法。
函数介绍
OpenCV 通过函数 cv2.face.EigenFaceRecognizer_create()生成特征脸识别器实例模型,然后应用 cv2.face_FaceRecognizer.train()函数完成训练,最后用 cv2.face_FaceRecognizer.predict()函数完成人脸识别。
- 函数cv2.face.EigenFaceRecognizer_create()
函数 cv2.face.EigenFaceRecognizer_create()的语法格式为:
retval = cv2.face.EigenFaceRecognizer_create( [, num_components[,
threshold]] )
式中的两个参数都是可选参数,含义如下:
- num_components:在 PCA 中要保留的分量个数。当然,该参数值通常要根据输入数据
来具体确定,并没有一定之规。一般来说,80 个分量就足够了。 - threshold:进行人脸识别时所采用的阈值。
- 函数cv2.face_FaceRecognizer.train()
函数 cv2.face_FaceRecognizer.train()对每个参考图像进行 EigenFaces 计算,得到一个向量。
每个人脸都是整个向量集中的一个点。该函数的语法格式为:
None = cv2.face_FaceRecognizer.train( src, labels )
式中各个参数的含义为:
- src:训练图像,用来学习的人脸图像。
- labels:人脸图像所对应的标签。
该函数没有返回值。
- 函数cv2.face_FaceRecognizer.predict()
函数 cv2.face_FaceRecognizer.predict()在对一个待测人脸图像进行判断时,会寻找与当前图像距离最近的人脸图像。与哪个人脸图像最接近,就将待测图像识别为其对应的标签。该函数的语法格式为:
label, confidence = cv2.face_FaceRecognizer.predict( src )
式中各个参数及返回值的含义为:
- src:需要识别的人脸图像。
- label:返回的识别结果标签。
- confidence:返回的置信度评分。置信度评分用来衡量识别结果与原有模型之间的距离。
0 表示完全匹配。该参数值通常在 0 到 20 000 之间,只要低于 5000,都被认为是相当可靠的识别结果。注意,这个范围与 LBPH 的置信度评分值的范围是不同的。
示例:使用 EigenFaces 模块完成一个简单的人脸识别程序。
import cv2
import numpy as np
images=[]
images.append(cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE))
labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image=cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE)
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)
运行结果:
报错了

说训练必须所有的图片大小要一致。
新代码:
import cv2
import numpy as np
images=[]
img1= cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE);
img1.resize((240,240))
images.append(img1)img2= cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE);
img2.resize((240,240))
images.append(img2)img3= cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE);
img3.resize((240,240))
images.append(img3)img4= cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE);
img4.resize((240,240))
images.append(img4)labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels)) # 识别器训练
predict_image=cv2.imread("face\\face6.png",cv2.IMREAD_GRAYSCALE)
predict_image.resize((240,240))
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)
运行结果:
label= 1
confidence= 11499.110301703204
从结果来看,比 LBPH 人脸识别 对比稍微准点。
相关文章:
opencv进阶12-EigenFaces 人脸识别
EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。 基本原理…...
The internal rate of return (IRR)
内部收益率 NPV(Net Present Value)_spencer_tseng的博客-CSDN博客...
半导体自动化专用静电消除器主要由哪些部分组成
半导体自动化专用静电消除器是一种用于消除半导体生产过程中的静电问题的设备。由于半导体制造过程中对静电的敏感性,静电可能会对半导体器件的质量和可靠性产生很大的影响,甚至造成元件损坏。因此,半导体生产中采用专用的静电消除器是非常重…...
【C++入门到精通】C++入门 —— deque(STL)
阅读导航 前言一、deque简介1. 概念2. 特点 二、deque使用1. 基本操作(增、删、查、改)2. 底层结构 三、deque的缺陷四、 为什么选择deque作为stack和queue的底层默认容器总结温馨提示 前言 文章绑定了VS平台下std::deque的源码,大家可以下载…...
Codeforces Round 893 (Div. 2) D.Trees and Segments
原题链接:Problem - D - Codeforces 题面: 大概意思就是让你在翻转01串不超过k次的情况下,使得a*(0的最大连续长度)(1的最大连续长度)最大(1<a<n)。输出n个数&…...
SpringBoot + Vue 前后端分离项目 微人事(九)
职位管理后端接口设计 在controller包里面新建system包,再在system包里面新建basic包,再在basic包里面创建PositionController类,在定义PositionController类的接口的时候,一定要与数据库的menu中的url地址到一致,不然…...
【业务功能篇71】Cglib的BeanCopier进行Bean对象拷贝
选择Cglib的BeanCopier进行Bean拷贝的理由是, 其性能要比Spring的BeanUtils,Apache的BeanUtils和PropertyUtils要好很多, 尤其是数据量比较大的情况下。 BeanCopier的主要作用是将数据库层面的Entity转化成service层的POJO。BeanCopier其实已…...
让eslint的错误信息显示在项目界面上
1.需求描述 效果如下 让eslint中的错误,显示在项目界面上 2.问题解决 1.安装 vite-plugin-eslint 插件 npm install vite-plugin-eslint --save-dev2.配置插件 // vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import e…...
手摸手带你实现一个开箱即用的Node邮件推送服务
目录 编辑 前言 准备工作 邮箱配置 代码实现 服务部署 使用效果 题外话 写在最后 相关代码: 前言 由于邮箱账号和手机号的唯一性,通常实现验证码的校验时比较常用的两种方式是手机短信推送和邮箱推送,此外,邮件推送服…...
【Linux网络】网络编程套接字 -- 基于socket实现一个简单UDP网络程序
认识端口号网络字节序处理字节序函数 htonl、htons、ntohl、ntohs socketsocket编程接口sockaddr结构结尾实现UDP程序的socket接口使用解析socket处理 IP 地址的函数初始化sockaddr_inbindrecvfromsendto 实现一个简单的UDP网络程序封装服务器相关代码封装客户端相关代码实验结…...
Python学习笔记第六十四天(Matplotlib 网格线)
Python学习笔记第六十四天 Matplotlib 网格线普通网格线样式网格线 后记 Matplotlib 网格线 我们可以使用 pyplot 中的 grid() 方法来设置图表中的网格线。 grid() 方法语法格式如下: matplotlib.pyplot.grid(bNone, whichmajor, axisboth, )参数说明:…...
机器学习与模式识别3(线性回归与逻辑回归)
一、线性回归与逻辑回归简介 线性回归主要功能是拟合数据,常用平方误差函数。 逻辑回归主要功能是区分数据,找到决策边界,常用交叉熵。 二、线性回归与逻辑回归的实现 1.线性回归 利用回归方程对一个或多个特征值和目标值之间的关系进行建模…...
vue启动配置npm run serve,动态环境变量,根据不同环境访问不同域名
首先创建不同环境的配置文件,比如域名和一些常量,创建一个env文件,先看看文件目录 env.dev就是dev环境的域名,.test就是test环境域名,其他同理,然后配置package.json文件 {"name": "require-admin&qu…...
HTML <strike> 标签
HTML5 中不支持 <strike> 标签在 HTML 4 中用于定义删除线文本。 定义和用法 <strike> 标签可定义加删除线文本定义。 浏览器支持 元素ChromeIEFirefoxSafariOpera<strike>YesYesYesYesYes 所有浏览器都支持 <strike> 标签。 HTML 与 XHTML 之间…...
数学建模-模型详解(1)
规划模型 线性规划模型: 当涉及到线性规划模型实例时,以下是一个简单的示例: 假设我们有两个变量 x 和 y,并且我们希望最大化目标函数 Z 5x 3y,同时满足以下约束条件: x > 0y > 02x y < 10…...
MySQL 数据库表的基本操作
一、数据库表概述 在数据库中,数据表是数据库中最重要、最基本的操作对象,是数据存储的基本单位。数据表被定义为列的集合,数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录,每一列代表记录中的一个域。 二、数…...
企业微信电脑端开启chrome调试
首先: Mac端调试开启的快捷键:control shift command d Window端调试开启的快捷键: control shift alt d 这边以Mac为例,我们可以在电脑顶部看到调试的入口: 然后我们点击 『浏览器、webView相关』菜单,勾选上…...
Maven官网下载配置新仓库
1.Maven的下载 Maven的官网地址:Maven – Download Apache Maven 点击Download,查找 Files下的版本并下载如下图: 2.Maven的配置 自己在D盘或者E盘创建一个文件夹,作为本地仓库,存放项目依赖。 将下载好的zip文件进行解…...
银河麒麟V10 达梦安装教程
安装前先准备要安装包,包需要需要区分X86和arm架构。 版本为:dm8_20230419_FTarm_kylin10_sp1_64.iso 达梦数据库下载地址: https://www.aliyundrive.com/s/Qm7Es5BQM5U 第一步创建用户 su - root 1. 创建安装用户组 dminstall。 groupad…...
Python操作MongoDB数据库
安装MongoDB库 pip install pymongopython 代码 Author: tkhywang 2810248865qq.com Date: 2023-08-21 10:22:30 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-08-21 11:17:45 FilePath: \PythonProject02\MongoDB 数据库.py Description: 这是默认设置,请设置…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
