回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基…...
深入探索代理技术:Socks5、IP代理与网络安全
在当今高度互联的世界中,代理技术在网络安全和爬虫等领域发挥着重要作用。本文将着重介绍Socks5代理、IP代理以及它们在网络安全与爬虫开发中的应用,旨在帮助读者深入理解这些技术,从而更好地应用于实际情境。 1. Socks5代理的特点与用途 S…...

Matlab 频谱图中如何设置频率刻度
Matlab 频谱图中如何设置频率刻度(横坐标) 1、概述 时域信号经FFT 变换后得到了频谱,在作图时还必须设置正确的频率刻度,这样才能从图中得到正确的结果。下面来介绍如何设置正确的频率刻度。 2、案例分析 有一个余弦信号&#…...

在线转换器有哪些优势?在线Word转PDF操作分享
我们如果想要将两者不同格式文件进行格式转换,就需要下载安装转换器。如果出门带的设备没有安装转换软件客户端,就无法使用,会比较麻烦。现在有了在线转换工具,只需要打开相应的网页就可使用,那么在线Word转PDF的操作是…...

2023国赛数学建模A题思路模型代码汇总 高教社杯
本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...
vue3如何批量设置动态ref
示例如下: <template v-for"item in selectList"><el-select v-model"item.value" :ref"el > setRef(el, item)"><el-optionv-for"v in item.options":key"v.value":label"v.label"…...

Android Studio run app 设置 release 模式
背景 为验证我们的 SDK 集成在客户应用上的质量,需要我们的测试环境尽量的与客户应用保持一致。客户普遍都会打 release 包并混淆,然后进行上线应用,因此我们在测试过程中也需要使用 release 包进行验证。对于 Android Studio 运行项目&…...
【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包
【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包 一、SA8295 各镜像位置二、SA8295 QNX 侧镜像拷贝脚本三、SA8295 Android 侧镜像拷贝脚本四、使用QFIL 下载整包五、Fastboot 下载命令整理系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》…...

【Redis】Redisson分布式锁原理与使用
【Redis】Redisson分布式锁原理与使用 什么是Redisson? Redisson - 是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象,Redisson、Jedis、Lettuce 是三个不同的操作 Redis 的客户端,Jedis、Le…...

Segment Anything论文阅读笔记
Segment Anything论文阅读笔记 1. Segment Anything论文基本信息2. Segment Anything论文阅读2.1 第一遍阅读 Segment Anything2.2. 第二遍阅读 Segment Anything2.2.1. Segment Anything中相关的图表 1. Segment Anything论文基本信息 论文地址https://arxiv.org/abs/2304.02…...
Python入门教程 | Python 基础语法
标识符 第一个字符必须是字母表中字母或下划线 _ 。标识符的其他的部分由字母、数字和下划线组成。标识符对大小写敏感。 在 Python 3中,可以用中文作为变量名,非 ASCII 标识符也是允许的了。默认情况下,Python 3 源码文件以 UTF-8 编码&am…...

JAMstack架构:快速构建安全、高性能的现代应用
随着Web应用的快速发展,开发者们在寻找更加高效、安全和可维护的应用架构。JAMstack架构应运而生,它通过将前端、后端和部署过程分离,提供了一种现代化的方式来构建Web应用。在本文中,我们将深入探讨JAMstack架构的特点、优势以及…...

Web会话技术
会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应 会话跟踪:一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一浏览器,…...

hbuilderx打包苹果证书获取步骤
简介: 目前app开发,很多企业都用H5框架来开发,而uniapp又是这些h5框架里面最成熟的,因此hbuilderx就成为了开发者的首选。然而,打包APP是需要证书的,那么这个证书又是如何获得呢? 生成苹果证书相对复杂一些…...
JAVA下载Excel文件之后无法打开,提示损坏
resources 目录下放模板 excel 文件,通过接口下载后,可以正常下载,但打不开。 问题: springboot 项目简单的下载excel 模板功能,模板放在resources/template/目录中 public void downloadItemBatch(HttpServletRespo…...

复合 类型
字符串和切片 切片 切片的作用是允许你引用集合中部分连续的元素序列,而不是引用整个集合。 例如: let s String::from("hello world");let hello &s[0..5]; // 切片 [0,5) 等效于&s[..5] let world &s[6..11]; // 切片…...

Practices11|41. 缺失的第一个正数(数组)、73. 矩阵置零(矩阵)
41. 缺失的第一个正数(数组) 1.题目: 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1: 输入:nums [1,2,0] 输出…...

深入完整的带你了解java对象的比较
目录 元素的比较 1.基本类型的比较 2.对象比较的问题 1.运行结果 2.疑问 3.原因 对象的比较 1.覆写基类的equals 2.基于Comparble接口类的比较 3.基于比较器比较 4.三种方式对比 元素的比较 1.基本类型的比较 在Java 中,基本类型的对象可以直接比较大…...
ubuntu20.04升级GLIBC高版本方法,解决:version `GLIBC_2.34‘ not found
检查版本 strings /lib/x86_64-linux-gnu/libc.so.6 |grep GLIBC_ 1 显示结果 GLIBC_2.2.5 GLIBC_2.2.6 GLIBC_2.3 GLIBC_2.3.2 GLIBC_2.3.3 GLIBC_2.3.4 GLIBC_2.4 GLIBC_2.5 GLIBC_2.6 GLIBC_2.7 GLIBC_2.8 GLIBC_2.9 GLIBC_2.10 GLIBC_2.11 GLIBC_2.12 GLIBC_2.13 GLIBC_2…...

日产将使用东风纯电平台?官方回应:不是日产品牌
据财联社报道,日产中国在对于“日产将使用东风纯电平台”的传闻进行回应时指出,文中提及的平台将会用于日产在华合资企业的自主品牌,而不是日产品牌本身。这一消息进一步确认了之前每经网的报道,称日产将采用东风汽车最新发布的“…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...