回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基…...
深入探索代理技术:Socks5、IP代理与网络安全
在当今高度互联的世界中,代理技术在网络安全和爬虫等领域发挥着重要作用。本文将着重介绍Socks5代理、IP代理以及它们在网络安全与爬虫开发中的应用,旨在帮助读者深入理解这些技术,从而更好地应用于实际情境。 1. Socks5代理的特点与用途 S…...
Matlab 频谱图中如何设置频率刻度
Matlab 频谱图中如何设置频率刻度(横坐标) 1、概述 时域信号经FFT 变换后得到了频谱,在作图时还必须设置正确的频率刻度,这样才能从图中得到正确的结果。下面来介绍如何设置正确的频率刻度。 2、案例分析 有一个余弦信号&#…...
在线转换器有哪些优势?在线Word转PDF操作分享
我们如果想要将两者不同格式文件进行格式转换,就需要下载安装转换器。如果出门带的设备没有安装转换软件客户端,就无法使用,会比较麻烦。现在有了在线转换工具,只需要打开相应的网页就可使用,那么在线Word转PDF的操作是…...
2023国赛数学建模A题思路模型代码汇总 高教社杯
本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...
vue3如何批量设置动态ref
示例如下: <template v-for"item in selectList"><el-select v-model"item.value" :ref"el > setRef(el, item)"><el-optionv-for"v in item.options":key"v.value":label"v.label"…...
Android Studio run app 设置 release 模式
背景 为验证我们的 SDK 集成在客户应用上的质量,需要我们的测试环境尽量的与客户应用保持一致。客户普遍都会打 release 包并混淆,然后进行上线应用,因此我们在测试过程中也需要使用 release 包进行验证。对于 Android Studio 运行项目&…...
【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包
【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包 一、SA8295 各镜像位置二、SA8295 QNX 侧镜像拷贝脚本三、SA8295 Android 侧镜像拷贝脚本四、使用QFIL 下载整包五、Fastboot 下载命令整理系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》…...
【Redis】Redisson分布式锁原理与使用
【Redis】Redisson分布式锁原理与使用 什么是Redisson? Redisson - 是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象,Redisson、Jedis、Lettuce 是三个不同的操作 Redis 的客户端,Jedis、Le…...
Segment Anything论文阅读笔记
Segment Anything论文阅读笔记 1. Segment Anything论文基本信息2. Segment Anything论文阅读2.1 第一遍阅读 Segment Anything2.2. 第二遍阅读 Segment Anything2.2.1. Segment Anything中相关的图表 1. Segment Anything论文基本信息 论文地址https://arxiv.org/abs/2304.02…...
Python入门教程 | Python 基础语法
标识符 第一个字符必须是字母表中字母或下划线 _ 。标识符的其他的部分由字母、数字和下划线组成。标识符对大小写敏感。 在 Python 3中,可以用中文作为变量名,非 ASCII 标识符也是允许的了。默认情况下,Python 3 源码文件以 UTF-8 编码&am…...
JAMstack架构:快速构建安全、高性能的现代应用
随着Web应用的快速发展,开发者们在寻找更加高效、安全和可维护的应用架构。JAMstack架构应运而生,它通过将前端、后端和部署过程分离,提供了一种现代化的方式来构建Web应用。在本文中,我们将深入探讨JAMstack架构的特点、优势以及…...
Web会话技术
会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应 会话跟踪:一种维护浏览器状态的方法,服务器需要识别多次请求是否来自于同一浏览器,…...
hbuilderx打包苹果证书获取步骤
简介: 目前app开发,很多企业都用H5框架来开发,而uniapp又是这些h5框架里面最成熟的,因此hbuilderx就成为了开发者的首选。然而,打包APP是需要证书的,那么这个证书又是如何获得呢? 生成苹果证书相对复杂一些…...
JAVA下载Excel文件之后无法打开,提示损坏
resources 目录下放模板 excel 文件,通过接口下载后,可以正常下载,但打不开。 问题: springboot 项目简单的下载excel 模板功能,模板放在resources/template/目录中 public void downloadItemBatch(HttpServletRespo…...
复合 类型
字符串和切片 切片 切片的作用是允许你引用集合中部分连续的元素序列,而不是引用整个集合。 例如: let s String::from("hello world");let hello &s[0..5]; // 切片 [0,5) 等效于&s[..5] let world &s[6..11]; // 切片…...
Practices11|41. 缺失的第一个正数(数组)、73. 矩阵置零(矩阵)
41. 缺失的第一个正数(数组) 1.题目: 给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1: 输入:nums [1,2,0] 输出…...
深入完整的带你了解java对象的比较
目录 元素的比较 1.基本类型的比较 2.对象比较的问题 1.运行结果 2.疑问 3.原因 对象的比较 1.覆写基类的equals 2.基于Comparble接口类的比较 3.基于比较器比较 4.三种方式对比 元素的比较 1.基本类型的比较 在Java 中,基本类型的对象可以直接比较大…...
ubuntu20.04升级GLIBC高版本方法,解决:version `GLIBC_2.34‘ not found
检查版本 strings /lib/x86_64-linux-gnu/libc.so.6 |grep GLIBC_ 1 显示结果 GLIBC_2.2.5 GLIBC_2.2.6 GLIBC_2.3 GLIBC_2.3.2 GLIBC_2.3.3 GLIBC_2.3.4 GLIBC_2.4 GLIBC_2.5 GLIBC_2.6 GLIBC_2.7 GLIBC_2.8 GLIBC_2.9 GLIBC_2.10 GLIBC_2.11 GLIBC_2.12 GLIBC_2.13 GLIBC_2…...
日产将使用东风纯电平台?官方回应:不是日产品牌
据财联社报道,日产中国在对于“日产将使用东风纯电平台”的传闻进行回应时指出,文中提及的平台将会用于日产在华合资企业的自主品牌,而不是日产品牌本身。这一消息进一步确认了之前每经网的报道,称日产将采用东风汽车最新发布的“…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
