当前位置: 首页 > news >正文

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-SVM麻雀搜索算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基…...

深入探索代理技术:Socks5、IP代理与网络安全

在当今高度互联的世界中,代理技术在网络安全和爬虫等领域发挥着重要作用。本文将着重介绍Socks5代理、IP代理以及它们在网络安全与爬虫开发中的应用,旨在帮助读者深入理解这些技术,从而更好地应用于实际情境。 1. Socks5代理的特点与用途 S…...

Matlab 频谱图中如何设置频率刻度

Matlab 频谱图中如何设置频率刻度(横坐标) 1、概述 时域信号经FFT 变换后得到了频谱,在作图时还必须设置正确的频率刻度,这样才能从图中得到正确的结果。下面来介绍如何设置正确的频率刻度。 2、案例分析 有一个余弦信号&#…...

在线转换器有哪些优势?在线Word转PDF操作分享

我们如果想要将两者不同格式文件进行格式转换,就需要下载安装转换器。如果出门带的设备没有安装转换软件客户端,就无法使用,会比较麻烦。现在有了在线转换工具,只需要打开相应的网页就可使用,那么在线Word转PDF的操作是…...

2023国赛数学建模A题思路模型代码汇总 高教社杯

本次比赛我们将会全程更新思路模型及代码,大家查看文末名片获取 之前国赛相关的资料和助攻可以查看 2022数学建模国赛C题思路分析_2022国赛c题matlab_UST数模社_的博客-CSDN博客 2022国赛数学建模A题B题C题D题资料思路汇总 高教社杯_2022国赛c题matlab_UST数模社…...

vue3如何批量设置动态ref

示例如下&#xff1a; <template v-for"item in selectList"><el-select v-model"item.value" :ref"el > setRef(el, item)"><el-optionv-for"v in item.options":key"v.value":label"v.label"…...

Android Studio run app 设置 release 模式

背景 为验证我们的 SDK 集成在客户应用上的质量&#xff0c;需要我们的测试环境尽量的与客户应用保持一致。客户普遍都会打 release 包并混淆&#xff0c;然后进行上线应用&#xff0c;因此我们在测试过程中也需要使用 release 包进行验证。对于 Android Studio 运行项目&…...

【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包

【SA8295P 源码分析】41 - SA8295所有镜像位置、拷贝脚本、生成QFIL包 一、SA8295 各镜像位置二、SA8295 QNX 侧镜像拷贝脚本三、SA8295 Android 侧镜像拷贝脚本四、使用QFIL 下载整包五、Fastboot 下载命令整理系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》…...

【Redis】Redisson分布式锁原理与使用

【Redis】Redisson分布式锁原理与使用 什么是Redisson&#xff1f; Redisson - 是一个高级的分布式协调Redis客服端&#xff0c;能帮助用户在分布式环境中轻松实现一些Java的对象&#xff0c;Redisson、Jedis、Lettuce 是三个不同的操作 Redis 的客户端&#xff0c;Jedis、Le…...

Segment Anything论文阅读笔记

Segment Anything论文阅读笔记 1. Segment Anything论文基本信息2. Segment Anything论文阅读2.1 第一遍阅读 Segment Anything2.2. 第二遍阅读 Segment Anything2.2.1. Segment Anything中相关的图表 1. Segment Anything论文基本信息 论文地址https://arxiv.org/abs/2304.02…...

Python入门教程 | Python 基础语法

标识符 第一个字符必须是字母表中字母或下划线 _ 。标识符的其他的部分由字母、数字和下划线组成。标识符对大小写敏感。 在 Python 3中&#xff0c;可以用中文作为变量名&#xff0c;非 ASCII 标识符也是允许的了。默认情况下&#xff0c;Python 3 源码文件以 UTF-8 编码&am…...

JAMstack架构:快速构建安全、高性能的现代应用

随着Web应用的快速发展&#xff0c;开发者们在寻找更加高效、安全和可维护的应用架构。JAMstack架构应运而生&#xff0c;它通过将前端、后端和部署过程分离&#xff0c;提供了一种现代化的方式来构建Web应用。在本文中&#xff0c;我们将深入探讨JAMstack架构的特点、优势以及…...

Web会话技术

会话:用户打开浏览器&#xff0c;访问web服务器的资源&#xff0c;会话建立&#xff0c;直到有一方断开连接&#xff0c;会话结束。在一次会话中可以包含多次请求和响应 会话跟踪:一种维护浏览器状态的方法&#xff0c;服务器需要识别多次请求是否来自于同一浏览器&#xff0c;…...

hbuilderx打包苹果证书获取步骤

简介&#xff1a; 目前app开发&#xff0c;很多企业都用H5框架来开发&#xff0c;而uniapp又是这些h5框架里面最成熟的&#xff0c;因此hbuilderx就成为了开发者的首选。然而,打包APP是需要证书的&#xff0c;那么这个证书又是如何获得呢&#xff1f; 生成苹果证书相对复杂一些…...

JAVA下载Excel文件之后无法打开,提示损坏

resources 目录下放模板 excel 文件&#xff0c;通过接口下载后&#xff0c;可以正常下载&#xff0c;但打不开。 问题&#xff1a; springboot 项目简单的下载excel 模板功能&#xff0c;模板放在resources/template/目录中 public void downloadItemBatch(HttpServletRespo…...

复合 类型

字符串和切片 切片 切片的作用是允许你引用集合中部分连续的元素序列&#xff0c;而不是引用整个集合。 例如&#xff1a; let s String::from("hello world");let hello &s[0..5]; // 切片 [0,5) 等效于&s[..5] let world &s[6..11]; // 切片…...

Practices11|41. 缺失的第一个正数(数组)、73. 矩阵置零(矩阵)

41. 缺失的第一个正数(数组) 1.题目&#xff1a; 给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,0] 输出&#xf…...

深入完整的带你了解java对象的比较

目录 元素的比较 1.基本类型的比较 2.对象比较的问题 1.运行结果 2.疑问 3.原因 对象的比较 1.覆写基类的equals 2.基于Comparble接口类的比较 3.基于比较器比较 4.三种方式对比 元素的比较 1.基本类型的比较 在Java 中&#xff0c;基本类型的对象可以直接比较大…...

ubuntu20.04升级GLIBC高版本方法,解决:version `GLIBC_2.34‘ not found

检查版本 strings /lib/x86_64-linux-gnu/libc.so.6 |grep GLIBC_ 1 显示结果 GLIBC_2.2.5 GLIBC_2.2.6 GLIBC_2.3 GLIBC_2.3.2 GLIBC_2.3.3 GLIBC_2.3.4 GLIBC_2.4 GLIBC_2.5 GLIBC_2.6 GLIBC_2.7 GLIBC_2.8 GLIBC_2.9 GLIBC_2.10 GLIBC_2.11 GLIBC_2.12 GLIBC_2.13 GLIBC_2…...

日产将使用东风纯电平台?官方回应:不是日产品牌

据财联社报道&#xff0c;日产中国在对于“日产将使用东风纯电平台”的传闻进行回应时指出&#xff0c;文中提及的平台将会用于日产在华合资企业的自主品牌&#xff0c;而不是日产品牌本身。这一消息进一步确认了之前每经网的报道&#xff0c;称日产将采用东风汽车最新发布的“…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...