回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图&#…...

浅析Python爬虫ip程序延迟和吞吐量影响因素
作为一名资深的爬虫程序员,今天我们很有必要来聊聊Python爬虫ip程序的延迟和吞吐量,这是影响我们爬取效率的重要因素。这里我们会提供一些实用的解决方案,让你的爬虫程序飞起来! 网络延迟 首先,让我们来看看网络延迟对…...
【100天精通python】Day43:python网络爬虫开发_爬虫基础(urlib库、Beautiful Soup库、使用代理+实战代码)
目录 1 urlib 库 2 Beautiful Soup库 3 使用代理 3.1 代理种类 HTTP、HTTPS 和 SOCKS5 3.2 使用 urllib 和 requests 库使用代理 3.3 案例:自建代理池 4 实战 提取视频信息并进行分析 1 urlib 库 urllib 是 Python 内置的标准库,用于处理URL、发送…...

Linux:安全技术与防火墙
目录 一、安全技术 1.安全技术 2.防火墙的分类 3.防水墙 4.netfilter/iptables关系 二、防火墙 1、iptables四表五链 2、黑白名单 3.iptables命令 3.1查看filter表所有链 iptables -L 编辑3.2用数字形式(fliter)表所有链 查看输出结果 iptables -nL 3.3 清空所有链…...

Confluent kafka 异常退出rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack
rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack 根据网上的例子,做了一个测试程序。 C# 操作Kafka_c# kafka_Riven Chen的博客-CSDN博客 但是执行下面一行时,弹出上面的异常,闪退。 consumer.Subscribe(queueName) 解决方案&…...

最新ChatGPT网站程序源码+AI系统+详细图文搭建教程/支持GPT4.0/AI绘画/H5端/Prompt知识库
一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧!…...

chatGPT-对话柏拉图
引言: 古希腊哲学家柏拉图,在他的众多著作中,尤以《理想国》为人所熟知。在这部杰作中,他勾勒了一个理想的政治制度,提出了各种政体,并阐述了他对于公正、智慧以及政治稳定的哲学观点。然而,其…...

Java项目-苍穹外卖-Day04
公共字段自动填充 这些字段在每张表基本都有,手动进行填充效率低,且后期维护更改繁琐 使用到注解AOP主要 先答应一个AutoFill注解 再定义一个切面类进行通知 对应代码 用到了枚举类和反射 package com.sky.aspect; /*** 自定义切面类,…...
SQL递归获取完整的树形结构数据
在 SQL 中,WITH RECURSIVE 用于创建递归查询,它允许在查询中引用自身。这种查询通常用于处理具有层次结构的数据,例如树形结构。 以下是使用 WITH RECURSIVE 创建递归查询的一般语法: WITH RECURSIVE [alias] ([column1], [colu…...
如何使用营销活动,提升小程序用户的参与度
在当今数字化时代,小程序已成为企业私域营销的重要一环。然而,仅仅拥有小程序还不足以吸引用户的兴趣和参与。营销活动作为推动用户参与的有效手段,可以在激烈的市场竞争中脱颖而出。本文将深入探讨如何使用营销活动,提升小程序用…...

IDEA中使用Docker插件构建镜像并推送至私服Harbor
一、开启Docker服务器的远程访问 1.1 开启2375远程访问 默认的dokcer是不支持远程访问的,需要加点配置,开启Docker的远程访问 # 首先查看docker配置文件所在位置 systemctl status docker# 会输出如下内容: ● docker.service - Docker Ap…...
第7章 高性能门户首页构建
mini商城第7章 高性能门户首页构建 一、课题 高性能门户建设 二、回顾 1、了解文件存储系统的概念 2、了解常用文件服务器的区别 3、掌握Minio的应用 三、目标 1、OpenResty 百万并发站点架构 OpenResty 特性介绍 搭建OpenResty Web站点动静分离方案剖析 2、多级缓存架…...

用加持了大模型的 Byzer-Notebook 做数据分析是什么体验
Byzer-Notebook 是专门为 SQL 而研发的一款 Web Notebook。他的第一公民是 SQL,而 Jupyter 则是是以 Python 为第一公民的。 随着 Byzer 引擎对大模型能力的支持日渐完善, Byzer-Notebook 也在不自觉中变得更加强大。我和小伙伴在聊天的过程中才发现他已…...

学习设计模式之观察者模式,但是宝可梦
前言 作者在准备秋招中,学习设计模式,做点小笔记,用宝可梦为场景举例,有错误欢迎指出。 观察者模式 观察者模式定义了一种一对多的依赖关系,一个对象的状态改变,其他所有依赖者都会接收相应的通知。 所…...

课程项目设计--spring security--用户管理功能--宿舍管理系统--springboot后端
写在前面: 还要实习,每次时间好少呀,进度会比较慢一点 本文主要实现是用户管理相关功能。 前文项目建立 文章目录 验证码功能验证码配置验证码生成工具类添加依赖功能测试编写controller接口启动项目 security配置拦截器配置验证码拦截器 …...

学习设计模式之装饰器模式,但是宝可梦
装饰模式 为了不改变组件的结构,动态地扩展其功能。 通常,扩展功能通过子类进行,但是继承的方式具有静态特征,耦合度高。 意图:动态地给对象添加额外的功能 主要解决:继承方式是静态特征,扩…...

【AWS】创建IAM用户;无法登录IAM用户怎么办?错误提示:您的身份验证信息错误,请重试(已解决)
目录 0.背景问题分析 1.解决步骤 0.背景问题分析 windows 11 ,64位 我的问题情景: 首先我创建了aws的账户,并且可以用ROOT用户登录,但是在登录时选择IAM用户,输入ROOT的名字和密码,就会提示【您的身份验证…...

微服务基础知识
文章目录 微服务基础知识一、系统架构的演变1、单体应用架构2、垂直应用架构3、分布式SOA架构(1)什么是SOA(2)SOA架构 4、微服务架构5、SOA和微服务的关系(1)SOA(2)微服务架构 二、分…...
倒残差结构
倒残差结构: 倒残差结构是MobileNetV2中引入的一种设计,用于增强网络的表达能力和特征提取能力,同时保持轻量级的特点。它的核心思想是在每个瓶颈块中,先使用一个扩张卷积(Dilated Convolution)&#x…...

Docker的基本使用
Docker 概念 Docker架构 docker分为客户端,Docker服务端,仓库 客户端 Docker 是一个客户端-服务器(C/S)架构程序。Docker 客户端只需要向 Docker 服务端发起请求,服务端将完成所有的工作并返回相应结果。 Docker …...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
算法250609 高精度
加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...