当前位置: 首页 > news >正文

Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2

 一.环境描述

spark提交job到yarn报错,业务代码比较简单,通过接口调用获取数据,将数据通过sparksql将数据写入hive中,尝试各种替换hadoop版本,最后拿下

1.hadoop环境

2.项目 pom.xml

spark-submit \
--name GridCorrelationMain \
--master yarn \
--deploy-mode cluster \
--executor-cores 2 \
--executor-memory 4G \
--num-executors 5 \
--driver-memory 2G \
--class cn.zd.maincode.wangge.GridCorrelationMain \
/home/boeadm/zwj/iot/cp-etl-spark-data/target/cp_zhengda_spark_utils-1.0-SNAPSHOT.jareyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE2OTI0MzU5NjgsImlhdCI6MTY5MjM0OTU2Mywic3ViIjo1MjB9.rCmnhF2EhdzH62T7lP3nmxQSxh17PotscxEcZkjL5hk<dependencies><dependency><groupId>org.apache.commons</groupId><artifactId>commons-configuration2</artifactId><version>2.9.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.11</artifactId><version>2.3.3</version><exclusions><exclusion><artifactId>hadoop-client</artifactId><groupId>org.apache.hadoop</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.3.3</version><!--<scope>provided</scope>--><!-- <exclusions><exclusion><groupId>com.google.guava</groupId><artifactId>guava</artifactId></exclusion></exclusions>--></dependency><!--<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>15.0</version></dependency>
--><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>${hadoop.version}</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion><exclusion><groupId>commons-httpclient</groupId><artifactId>commons-httpclient</artifactId></exclusion><!--          <exclusion><groupId>com.google.guava</groupId><artifactId>guava</artifactId></exclusion>--></exclusions><!--<scope>provided</scope>--></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>${hadoop.version}</version><exclusions><exclusion><artifactId>hadoop-common</artifactId><groupId>org.apache.hadoop</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.11</artifactId><version>2.3.2</version><exclusions><exclusion><artifactId>hive-exec</artifactId><groupId>org.spark-project.hive</groupId></exclusion><exclusion><artifactId>hive-metastore</artifactId><groupId>org.spark-project.hive</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hive</groupId><artifactId>hive-jdbc</artifactId><exclusions><exclusion><groupId>org.eclipse.jetty.aggregate</groupId><artifactId>jetty-all</artifactId></exclusion><exclusion><groupId>org.apache.hive</groupId><artifactId>hive-shims</artifactId></exclusion><exclusion><artifactId>hbase-mapreduce</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>hbase-server</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>log4j-slf4j-impl</artifactId><groupId>org.apache.logging.log4j</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions><version>2.1.1</version></dependency><!--服务验证相关依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion></exclusions><!--<scope>provided</scope>--></dependency><!--本地跑的话 需要这个jar--><dependency><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId><version>1.15</version><!--<scope>provided</scope>--></dependency><dependency><groupId>com.typesafe</groupId><artifactId>config</artifactId><version>1.3.1</version></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.62</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>${fastjson.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.json/json --><dependency><groupId>org.json</groupId><artifactId>json</artifactId><version>20160810</version></dependency><dependency><groupId>com.github.qlone</groupId><artifactId>retrofit-crawler</artifactId><version>1.0.0</version></dependency><dependency><groupId>com.oracle.database.jdbc</groupId><artifactId>ojdbc8</artifactId><version>12.2.0.1</version></dependency><!--mysql连接--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.40</version></dependency><dependency><groupId>javax.mail</groupId><artifactId>javax.mail-api</artifactId><version>1.5.6</version></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-email</artifactId><version>1.4</version></dependency></dependencies>

3.项目集群提交报错


        at org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupRelation(SessionCatalog.scala:696)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveRelations$$lookupTableFromCatalog(Analyzer.scala:730)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:685)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:715)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:708)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
        at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:89)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
        at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
        at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:326)
        at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
        at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:324)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:708)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:654)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
        at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
        at scala.collection.immutable.List.foldLeft(List.scala:84)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
        at scala.collection.immutable.List.foreach(List.scala:392)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
        at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:127)
        at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:121)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:106)
        at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:105)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
        at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
        at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
        at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
        at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
        at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:78)
        at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:651)
        at cn.zd.maincode.wangge.GridCorrelationMain$.createDataFrameAndTempView(GridCorrelationMain.scala:264)
        at cn.zd.maincode.wangge.GridCorrelationMain$.horecaGridInfo(GridCorrelationMain.scala:148)
        at cn.zd.maincode.wangge.GridCorrelationMain$.main(GridCorrelationMain.scala:110)
        at cn.zd.maincode.wangge.GridCorrelationMain.main(GridCorrelationMain.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:673)
Caused by: java.lang.ExceptionInInitializerError
        at org.apache.hadoop.hive.conf.HiveConf.<clinit>(HiveConf.java:105)
        at org.apache.spark.sql.hive.client.HiveClientImpl.newState(HiveClientImpl.scala:153)
        at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:118)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
        at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
        at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
        at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:292)
        at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:395)
        at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:284)
        at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:68)
        at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:67)
        at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:217)
        at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:217)
        at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:217)
        at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99)
        ... 72 more
Caused by: java.lang.IllegalArgumentException: Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2
        at org.apache.hadoop.hive.shims.ShimLoader.getMajorVersion(ShimLoader.java:169)
        at org.apache.hadoop.hive.shims.ShimLoader.loadShims(ShimLoader.java:134)
        at org.apache.hadoop.hive.shims.ShimLoader.getHadoopShims(ShimLoader.java:95)
        at org.apache.hadoop.hive.conf.HiveConf$ConfVars.<clinit>(HiveConf.java:354)
        ... 88 more

End of LogType:stderr

4.最终解决方式

 将相关依赖不打进包中

   <dependency><groupId>org.apache.hive</groupId><artifactId>hive-jdbc</artifactId><exclusions><exclusion><groupId>org.eclipse.jetty.aggregate</groupId><artifactId>jetty-all</artifactId></exclusion><exclusion><groupId>org.apache.hive</groupId><artifactId>hive-shims</artifactId></exclusion><exclusion><artifactId>hbase-mapreduce</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>hbase-server</artifactId><groupId>org.apache.hbase</groupId></exclusion><exclusion><artifactId>log4j-slf4j-impl</artifactId><groupId>org.apache.logging.log4j</groupId></exclusion><exclusion><artifactId>slf4j-log4j12</artifactId><groupId>org.slf4j</groupId></exclusion></exclusions><version>2.1.1</version></dependency><!--服务验证相关依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version><exclusions><exclusion><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId></exclusion></exclusions><!--<scope>provided</scope>--></dependency><!--本地跑的话 需要这个jar--><dependency><groupId>commons-codec</groupId><artifactId>commons-codec</artifactId><version>1.15</version><!--<scope>provided</scope>--></dependency><dependency><groupId>com.typesafe</groupId><artifactId>config</artifactId><version>1.3.1</version></dependency><!-- https://mvnrepository.com/artifact/com.alibaba/fastjson --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.62</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>${fastjson.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.json/json --><dependency><groupId>org.json</groupId><artifactId>json</artifactId><version>20160810</version></dependency><dependency><groupId>com.github.qlone</groupId><artifactId>retrofit-crawler</artifactId><version>1.0.0</version></dependency><dependency><groupId>com.oracle.database.jdbc</groupId><artifactId>ojdbc8</artifactId><version>12.2.0.1</version></dependency><!--mysql连接--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.40</version></dependency><!--10月31日 新取消-->
<!--        <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>28.0-jre</version></dependency>--><!-- https://mvnrepository.com/artifact/org.apache.directory.studio/org.apache.commons.codec --><!-- https://mvnrepository.com/artifact/org.apache.commons/org.apache.commons.codec --><!--邮件发送依赖--><dependency><groupId>javax.mail</groupId><artifactId>javax.mail-api</artifactId><version>1.5.6</version></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-email</artifactId><version>1.4</version></dependency><!--<dependency><groupId>org.scala-lang</groupId><artifactId>scala-library</artifactId><version>2.11.2</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-reflect</artifactId><version>2.11.2</version></dependency><dependency><groupId>org.scala-lang</groupId><artifactId>scala-compiler</artifactId><version>2.11.2</version></dependency>--><!--        <dependency>-->
<!--            <groupId>com.starrocks</groupId>-->
<!--            <artifactId>starrocks-spark2_2.11</artifactId>-->
<!--            <version>1.0.1</version>-->
<!--        </dependency>--></dependencies>

相关文章:

Unrecognized Hadoop major version number: 3.0.0-cdh6.3.2

一.环境描述 spark提交job到yarn报错&#xff0c;业务代码比较简单&#xff0c;通过接口调用获取数据&#xff0c;将数据通过sparksql将数据写入hive中&#xff0c;尝试各种替换hadoop版本&#xff0c;最后拿下 1.hadoop环境 2.项目 pom.xml spark-submit \ --name GridCorr…...

机器学习分类,损失函数中为什么要用Log,机器学习的应用

目录 损失函数中为什么要用Log 为什么对数可以将乘法转化为加法&#xff1f; 机器学习&#xff08;Machine Learning&#xff09; 机器学习的分类 监督学习 无监督学习 强化学习 机器学习的应用 应用举例&#xff1a;猫狗分类 1. 现实问题抽象为数学问题 2. 数据准备…...

PySpark安装及WordCount实现(基于Ubuntu)

先盘点一下要安装哪些东西&#xff1a; VMwareubuntu 14.04&#xff08;64位&#xff09;Java环境&#xff08;JDK 1.8&#xff09;Hadoop 2.7.1Spark 2.4.0&#xff08;Local模式&#xff09;Pycharm &#xff08;一&#xff09;Ubuntu VMware 和 ubuntu 14.04&#xff08;…...

SpringBoot 模板模式实现优惠券逻辑

一、计算逻辑的类结构图 在这张图里&#xff0c;顶层接口 RuleTemplate 定义了 calculate 方法&#xff0c;抽象模板类 AbstractRuleTemplate 将通用的模板计算逻辑在 calculate 方法中实现&#xff0c;同时它还定义了一个抽象方法 calculateNewPrice 作为子类的扩展点。各个具…...

并查集 rank 的优化(Java 实例代码)

目录 并查集 rank 的优化 Java 实例代码 UnionFind3.java 文件代码&#xff1a; 并查集 rank 的优化 上一小节介绍了并查集基于 size 的优化&#xff0c;但是某些场景下&#xff0c;也会存在某些问题&#xff0c;如下图所示&#xff0c;操作 union(4,2)。 根据上一小节&…...

TDA4超级玩家浮出水面,行泊一体功能、成本刷到极致

2023年以来&#xff0c;智能驾驶市场进入L2普及、高阶ADAS功能&#xff08;NOA&#xff09;大规模量产的新周期&#xff0c;降本增效&#xff0c;打造极致性价比、提升用户体验等&#xff0c;成为了竞争的焦点。 其中&#xff0c;替换更具性价比的硬件平台、传感器复用、系统优…...

3分钟了解Android中稳定性测试

一、什么是Monkey Monkey在英文里的含义是猴子&#xff0c;在测试行业的学名叫“猴子测试”&#xff0c;指的是没有测试经验的人甚至是根本不懂计算机的人&#xff08;就像一只猴子&#xff09;&#xff0c;不需要知道程序的任何用户交互方面的知识&#xff0c;给他一个程序&a…...

LVS-DR+keepalived实现高可用负载群集

VRRP 通信原理&#xff1a; VRRP就是虚拟路由冗余协议&#xff0c;它的出现就是为了解决静态路由的单点故障。 VRRP是通过一种竞选的一种协议机制&#xff0c;来将路由交给某台VRRP路由。 VRRP用IP多播的方式&#xff08;多播地址224.0.0.18&#xff09;来实现高可用的通信&…...

阿里云国际版注册教程

什么是阿里云国际版&#xff1f; 阿里云国际版是阿里云专为海外客户供给的服务器及核算资源&#xff0c;涵盖了云主机、弹性裸金属服务器、容器服务、数据库及安全和监控等一系列云核算解决方案。 与其他云核算服务供给商不同&#xff0c;阿里云国际版在安全性、稳定性、性能方…...

基于百度文心大模型创作的实践与谈论

文心概念 百度文心大模型源于产业、服务于产业&#xff0c;是产业级知识增强大模型。百度通过大模型与国产深度学习框架融合发展&#xff0c;打造了自主创新的AI底座&#xff0c;大幅降低了AI开发和应用的门槛&#xff0c;满足真实场景中的应用需求&#xff0c;真正发挥大模型…...

Java基础知识题(五)

系列文章目录 Java基础知识题(一) Java基础知识题(二) Java基础知识题(三) Java基础知识题(四) Java基础知识题(五) 文章目录 系列文章目录 前言 一 Java的数据连接——JDBC 1. 简述什么是JDBC&#xff1f;重点 2. JDBC PreparedStatement比Statement有什么优势&…...

攻防世界-fileinclude

原题 解题思路 题目已经告诉了&#xff0c;flag在flag.php中&#xff0c;先查看网页源代码&#xff08;快捷键CTRLU&#xff09;。 通过抓包修改&#xff0c;可以把lan变量赋值flag。在cookie处修改。新打开的网页没有cookie&#xff0c;直接添加“Cookie: languagephp://filte…...

流媒体服务器SRS的搭建及QT下RTMP推流客户端的编写

一、前言 目前市面上有很多开源的流媒体服务器解决方案&#xff0c;常见的有SRS、EasyDarwin、ZLMediaKit和Monibuca。这几种的对比如下&#xff1a; &#xff08;本图来源&#xff1a;https://www.ngui.cc/zz/1781086.html?actiononClick&#xff09; 二、SRS的介绍 SRS&am…...

Effective C++条款11——在operator=中处理“自我赋值”(构造/析构/赋值运算)

“自我赋值”发生在对象被赋值给自己时: class Widget {}; Widget w; // ... w w; // 赋值给自己 这看起来有点愚蠢&#xff0c;但它合法&#xff0c;所以不要认定客户绝不会那么做。此外赋值动作并不总是那么可被一眼辨识出来&#xff0c;例如: a[i] a[j]; …...

可视化绘图技巧100篇基础篇(八)-气泡图(一)

目录 前言 适用场景 图例 绘图工具及代码实现 EXCEL 1、单轴气泡图...

Elasticsearch查询之Disjunction Max Query

前言 Disjunction Max Query 又称最佳 best_fields 匹配策略&#xff0c;用来优化当查询关键词出现在多个字段中&#xff0c;以单个字段的最大评分作为文档的最终评分&#xff0c;从而使得匹配结果更加合理 写入数据 如下的两条例子数据&#xff1a; docId: 1 title: java …...

Lock wait timeout exceeded; try restarting transaction的错误

文章目录 一、异常发现二、异常定位1、锁表语句确认2、实际场景排查三、解决思路1、本次解决方式2、其他场景解决思路扩展1、【治标方法】innodb_lock_wait_timeout 锁定等待时间改大2、【治标方法】事务信息查询3、【治标方法】如果杀掉线程依然不能解决,可以查找执行线程耗时…...

ShardingSphere01-docker环境安装

使用docker安装数据库是一个非常好的选择&#xff0c;后续的读写分离、数据分片等功能的数据库都是由docker创建。 一、安装准备 1、前提条件 Docker可以运行在Windows、Mac、CentOS、Ubuntu等操作系统上 Docker支持以下的CentOS版本&#xff1a; CentOS 7 (64-bit)CentOS …...

Java代码审计13之URLDNS链

文章目录 1、简介urldns链2、hashmap与url类的分析2.1、Hashmap类readObject方法的跟进2.2、URL类hashcode方法的跟进2.3、InetAddress类的getByName方法 3、整个链路的分析3.1、整理上述的思路3.2、一些疑问的测试3.3、hashmap的put方法分析3.4、反射3.5、整个代码 4、补充说明…...

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRBiGRU双向门控循环单元分位数回归时间序列…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...