当前位置: 首页 > news >正文

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3

5

基本介绍

MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测,WOA-CNN-GRU-Attention结合注意力机制多变量时间序列预测。

模型描述

Matlab实现WOA-CNN-GRU-Attention多变量时间序列预测
1.融合Attention要求Matlab2023版以上;
2.基于鲸鱼优化算法(WOA)、卷积神经网络(CNN)和门控循环单元网络(GRU)融合注意力机制的超前24步多变量时间序列回归预测算法;
3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测;
通过WOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。
注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。
4.提供MAPE、RMSE、MAE等计算结果展示。
适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主获取。
        % GRU输出gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop2')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0mydevice = 'gpu';
elsemydevice = 'cpu';
endoptions = trainingOptions('adam', ...'MaxEpochs',MaxEpochs, ...'MiniBatchSize',MiniBatchSize, ...'GradientThreshold',1, ...'InitialLearnRate',learningrate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',56, ...'LearnRateDropFactor',0.25, ...'L2Regularization',1e-3,...'GradientDecayFactor',0.95,...'Verbose',false, ...'Shuffle',"every-epoch",...'ExecutionEnvironment',mydevice,...'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现WOA-CNN-GRU-Attention多变量时间序列预测,WOA-CNN-GR…...

C#与西门子PLC1500的ModbusTcp服务器通信1--项目背景

最近在一个120万元的项目中,涉及到modbustcp通信,我作为软件总工负责项目的通信程序开发,modbus是一个在工业自动化领域中的通信协议,可以是modbusrtu,modbusascii,modbustcp三个形式,具体来说是…...

Socks5代理与IP代理:网络安全与爬虫之道

1. Socks5代理的多功能性 Socks5代理是一种支持TCP和UDP协议的代理技术,适用范围广泛。不同于传统HTTP代理,Socks5代理在传输数据时更为灵活,可以满足实时数据传输的需求,适用于在线游戏、视频流等场景。此外,Socks5代…...

苹果电脑怎么录屏?步骤详解,看到就是赚到

苹果电脑作为一款受欢迎的高性能设备,不仅在日常工作中发挥着重要作用,还可以用于创造内容,如录制屏幕内容。录屏功能能够帮助用户将屏幕上的活动记录成视频,方便分享、演示或存档。可是您知道苹果电脑怎么录屏吗?通过…...

vb毕业生管理系统设计与实现

【摘要】 本毕业生管理系统是使用VB和ACCESS数据库为开发工具开发的一个全新的管理系统(MIS)。开发出的软件可以在任何一个装有VB环境的机器上运行。本毕业生管理系统包括六个子模块:用户登陆模块、学籍管理模块、学生成绩模块、毕业设计选题模块、毕业设计成绩管理模块、系…...

WPF入门到精通:4.页面增删改查及调用接口(待完善)

在WPF中,页面的增删改查可以通过使用DataGrid等控件来实现。接口的调用可以使用HttpClient或RestSharp等网络库来完成。 1.页面增删改查 使用DataGrid控件来展示数据,并通过绑定数据源来实现数据的增删改查操作。示例代码如下: XAML代码&a…...

容器和云原生(三):kubernetes搭建与使用

目录 单机K8S docker containerd image依赖 kubeadm初始化 验证 crictl工具 K8S核心组件 上文安装单机docker是很简单docker,但是生产环境需要多个主机,主机上启动多个docker容器,相同容器会绑定形成1个服务service,微服务…...

spring boot集成jasypt 并 实现自定义加解密

一. 技术需求 由于项目中的配置文件 配置的地方过多,现将配置文件统一放到nacos上集中管理 且密码使用加密的方式放在配置文件中 项目中组件使用的版本环境如下 spring cloud 2021.0.5 spring cloud alibaba 2021.0.5.0 spring boot 2.6.13 二. 技术实现 配置文…...

Qt文件系统操作和文件的读写

一、文件操作类概述 QIODevice:所有输入输出设备的基础类 QFile:用于文件操作和文件数据读写的类QSaveFile:用于安全保存文件的类QTemporaryFile:用于创建临时文件的类QTcpSocket和QUdpSocket:分别实现了TCP和UDP的类…...

MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models

本文也是LLM系列相关文章,针对《MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models》的翻译。 MME:一个多模态大型语言模型的综合评估基准 摘要1 引言2 MME评估套件3 实验4 分析5 结论 摘要 多模态大语言模型(MLLM&…...

学习开发振弦采集模块的注意事项

学习开发振弦采集模块的注意事项 (三河凡科科技/飞讯教学)振弦采集模块是一种用来实时采集和处理振弦信号的电子设备,在工业、航空、医疗等领域都有广泛应用。学习开发振弦采集模块需要注意以下几点: 一、硬件选择 首先需要选择…...

抵御时代风险:高级安全策略与实践

目录 网页篡改攻击 流量攻击 数据库攻击 恶意扫描攻击 域名攻击 在今天的数字时代,网站已经成为企业、机构和个人展示信息、交流互动的重要平台。然而,随着网络攻击技术的不断进步,网站也面临着各种安全威胁。本文将探讨五种常见的网络攻…...

(3)、SpringCache源码分析

1、入口说明 @EnableCaching是开启SpringCache的一个总开关,开启时候我们的缓存相关注解才会生效,所以我们@EnableCaching开始作为入口进行分析, 2、分析@EnableCaching注解 @Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Documented @Import(...

如何在 Ubuntu 中安装最新的 Python 版本

动动发财的小手,点个赞吧! Python 是增长最快的主要通用编程语言。其原因有很多,例如其可读性和灵活性、易于学习和使用、可靠性和效率。 目前使用的 Python 有两个主要版本 – 2 和 3(Python 的现在和未来)&#xff1…...

等保测评--安全物理环境--测评方法

安全子类--物理位置选择 a)机房场地应选择在具有防震、防风和防雨等能力的建筑内; 一、测评对象 记录类文档和机房 二、测评实施 1)检查机房所在建筑物是否具有建筑物抗震设防审批文档; 2)检查机房门窗是否不存在因风导致的尘土严重; 3)检查机房是否不存在雨水渗漏…...

解决jmeter导入jmx文件报错方法

有的时候我们导入别人的jmx文件,但是在导入的时候会报错,如下图: 这是缺少jmeter插件jar包所引起的,下载对应jar包放到jmeter安装目录对应的lib/ext下就可以了。可以通过插件管理工具包下载安装,也可以直接下载对应的…...

CH32V307 开启浮点后rtthread的修改

官方版本是3.1.3,而且只有整数的,开启浮点后要做一些修改,这里问了官方并贴出来方便大家使用: 首先在mounriver开启浮点,步骤: 开启浮点:ide 开启float point->rvf, floating point abi->…...

网络面试题(172.22.141.231/26,该IP位于哪个网段? 该网段拥有多少可用IP地址?广播地址是多少?)

此题面试中常被问到,一定要会172.22.141.231/26,该IP位于哪个网段? 该网段拥有多少可用IP地址?广播地址是多少? 解题思路: 网络地址:172.22.141.192 10101100.00010110.10001101.11000000 广播…...

macOS nginx部署前端项目

1、安装nginx; brew install nginx2、配置nginx,主要配置代码,服务器代理 1、配置文件地址 根目录是 macOS 文件系统的最顶层目录。您可以在 Finder 中使用快捷键 Shift Command G,然后输入 /usr,即可直接打开 /u…...

管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——削弱——第一节 推理论证

文章目录 第七章 削弱质疑第一节 削弱-题型1-推理论证-论证为预测结果题-削弱质疑-预测-推理论证-分类1-削弱论点真题(2019-24)-削弱质疑-预测-推理论证-分类1-削弱论点真题(2019-42)-削弱质疑-预测-推理论证-分类1-削弱论点真题(2011-32)-削弱质疑-预测-推理论证-分类…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...