当前位置: 首页 > news >正文

matlab使用教程(20)—插值基础

1.网格和散点样本数据

        插值是在位于一组样本数据点域中的查询位置进行函数值估算的方法。函数值是根据最接近查询点的样本数据点计算的。MATLAB 根据样本数据的结构,可以执行两种插值。样本数据可以形成网格,也可以是分散的。
        网格化的样本数据使得插值更加高效,因为有组织的数据结构使得 MATLAB 能够轻松找到最靠近查询点的样本数据点。然而,对散点数据进行插值需要数据点的“Delaunay 三角剖分”,这就增加了一重计算。因此,如果您的数据可以逼近为一个网格,则与散点插值相比,网格插值可以节省大量的计算时间和内存使用量。
        以下主题讨论了两种插值方式:
        • “插入网格数据” 讨论轴对齐网格格式的样本数据的一维插值和 N 维插值:

        • “内插散点数据” 讨论散点数据的 N 维插值:  

1.1 插值与曲线拟合

        MATLAB 中提供的插值方法可创建经过样本数据点的插值函数。也就是说,如果查询一个样本位置的插值函数,会取回精确的样本数据值而不是逼近。对比插值,曲线和曲面拟合算法则不需要通过样本数据点。有关曲线拟合的详细信息,请参阅 Curve Fitting Toolbox。

1.2 网格逼近技术

        在某些情况下,可能需要数据的逼近网格。例如,网格具有的点可以位于曲线上。如果数据是基于经纬度的,则可能出现这样的数据集:
        使用曲线网格,您实际上是处理一组散点数据,并且必须使用计算成本更高的散点插值函数对这些值进行插值。然而,虽然输入数据无法直接网格化,但有时可以在合适的区间用直网格线来逼近曲线网格:

 

        您可以通过创建一组具有适当间距的网格向量来创建逼近网格。用直线逼近曲线网格的优点是可获得基于网格的插值的性能,但代价是数据略微失真。有关创建网格向量的详细信息,请参阅“网格表示法” 。

2.插入网格数据

        网格数据由形成网格的等间距点上的值或测量值组成。网格数据应用于许多领域,如气象学、测绘学和医学成像。在这些领域,经常以固定空间间隔取测量值,且可能随时间进行测量。这些有序的数据网格的范围可以从一维(对于简单时间序列)到四维(对于随时间变化的三维体测量)或更高维。网格数据的一些示例有:
        • 一维:随时间变化的股票价格
        • 二维:曲面的温度
        • 三维:大脑的 MRI 图像
        • 四维:随时间变化的海洋水体测量值
        在所有这些应用中,基于网格的插值可高效地将数据的有用性扩展到未进行测量的点。例如,如果您有某股票的小时价格数据,可以使用插值来逼近每 15 分钟的价格。

2.1 MATLAB 网格插值函数

        MATLAB 提供几种用于基于网格插值的工具:
        1)网格创建函数
        meshgrid ndgrid 函数创建各种维度的网格。 meshgrid 可以创建二维或三维网格,而 ndgrid 可以创建任意维数的网格。这些函数使用不同输出格式返回网格。您可以使用 pagetranspose(从 R2020b开始)或 permute 函数在这些网格格式之间进行转换,以交换网格的前两个维度。
        2)插值函数:
        interp 系列函数包括 interp1 interp2 interp3 interpn。每个函数都设计用于对具有特定维数的数据进行插值。 interp2 interp3 使用 meshgrid 格式的网格,而 interpn 使用 ndgrid 格式的网格。
        3)插值对象
        griddedInterpolant 对象支持对 ndgrid 格式的数据进行任意维数的插值。这些对象还支持多值插值(从 R2021a 开始),其中每个网格点可以有多个关联的值。与使用 interp 函数相比,使用 griddedInterpolant 对象具有内存和性能优势。 griddedInterpolant 为插值对象的重复查询提供了显著的性能改进,而 interp 函数在每次调用时都会执行新计算。此外,griddedInterpolant 以内存高效格式存储采样点,并以多线程方式利用多核计算机处理器。

2.2 网格表示法

        MATLAB 允许按以下三种方式之一表示网格:完整网格、简洁网格或默认网格。默认网格和简洁网格主要是分别为了方便使用和提高效率。
        1)完整网格
        完整网格是一种以显式方式定义所有点的网格。ndgrid meshgrid 的输出定义一个完整网格。您可以创建均匀的完整网格,其中每个维度中的点具有相等的间距,或创建非均匀的完整网格,其中一个或多个维度的间距不同。均匀网格在不同维度上可以有不同间距,但每个维度内的间距是固定的。
        均匀完整网格的示例如下:
[X,Y] = meshgrid([1 2 3],[3 6 9 12])
X =
1 2 3
1 2 3
1 2 3
1 2 3
Y =
3 3 3
6 6 6
9 9 9
12 12 12
        2)简洁网格
        在处理大型网格时,显式定义网格中的每个点会消耗大量内存。简洁网格表示法无需完整网格的内存使用量。简洁网格表示法只存储网格向量(每个维度对应一个),而不存储整个网格。各网格向量共同隐式定义了网格。事实上, meshgrid ndgrid 的输入是网格向量,这些函数复制网格向量以形成完整网格。简洁网格表示法使您能够绕过网格创建,并将网格向量直接提供给插值函数。例如,假设有两个向量, x1 = 1:3 x2 = 1:5 。可以将这些向量视为沿 x1 方向的一组坐标和沿 x2 方向的一组坐标,如下所示:
        每个箭头指向一个位置。使用这两个向量可以定义一组网格点,其中一组坐标由 x1 给定,另一组坐标由x2 给定。在复制网格向量时,它们构成了组成完整网格的两个坐标数组:
        您的输入网格向量可能是单调或非单调的。单调向量所含的值在该维中递增,或在该维中递减。反之,非单调向量含有的值会上下波动。如果输入网格向量是非单调的,如 [2 4 6 3 1] ,则 [X1,X2] = ndgrid([2  4 6 3 1]) 输出非单调网格。如果要将网格传递给其他 MATLAB 函数,网格向量应当是单调的。 sort 函数可用于确保单调性。
        3)默认网格
        在某些应用中,只有网格点的值才是重要的,而网格点之间的距离并不重要。例如,大多数 MRI 扫描收集的数据在所有方向上都是等间距的。在这种情况下,您可以允许插值函数自动生成默认网格表示来处理数据。为此,无需提供插值函数的网格输入。当您不提供网格输入时,该函数会自动将数据视为位于单位间距的网格上。该函数在执行时创建此单位间距的网格,省去您自己创建网格的麻烦。

2.3 示例:二维网格上的温度插值

        假设在一个曲面上以 5 厘米固定间隔收集温度数据,在每个方向上延伸 20 厘米。使用 meshgrid 创建完整网格。
[X,Y] = meshgrid(0:5:20)
X =
0 5 10 15 20
0 5 10 15 20
0 5 10 15 20
0 5 10 15 20
0 5 10 15 20
Y =
0 0 0 0 0
5 5 5 5 5
10 10 10 10 10
15 15 15 15 15
20 20 20 20 20
        每个网格点的坐标 (x,y) 表示为 X Y 矩阵中的对应元素。第一个网格点由 [X(1) Y(1)] 给出,即 [0 0],下一个网格点由 [X(2) Y(2)] 给出,即 [0 5],依此类推。现在,创建一个矩阵来表示网格上的温度测量值,然后将数据绘制为曲面。
T = [1 1 10 1 1;
1 10 10 10 10;
100 100 1000 100 100;
10 10 10 10 1;
1 1 10 1 1];
surf(X,Y,T)
view(2)

        虽然中心网格点的温度很高,但从原始数据来看,其位置和对周围网格点的影响并不明显。
要将数据分辨率提高 10 倍,请使用 interp2 将温度数据插值到使用 0.5 厘米间隔的更精细的网格上。再次使用 meshgrid 创建由矩阵 Xq Yq 表示的更精细的网格。然后,将 interp2 与原始网格、温度数据和新网格点结合使用,绘制生成的数据。默认情况下, interp2 在每个维度中使用线性插值。
[Xq,Yq] = meshgrid(0:0.5:20);
Tq = interp2(X,Y,T,Xq,Yq);
surf(Xq,Yq,Tq)
view(2)

 

对温度数据进行插值可以增加图像的细节,并大大提高测量区域内数据的有用性。

2.4 网格插值方法对比

        MATLAB 中基于网格的插值函数和对象提供几种不同插值方法。在选择插值方法时,切记有些方法比其他方法需要更多的内存或更长的计算时间。您需要权衡这些资源,以实现结果所需要的平滑度。下表给出了应用于同一一维数据的每种插值方法的预览,并概述了每种方法的优点、取舍和要求。

 

 

相关文章:

matlab使用教程(20)—插值基础

1.网格和散点样本数据 插值是在位于一组样本数据点域中的查询位置进行函数值估算的方法。函数值是根据最接近查询点的样本数据点计算的。MATLAB 根据样本数据的结构,可以执行两种插值。样本数据可以形成网格,也可以是分散的。 网格化的样本数据使得插值…...

Python功能制作之简单的3D特效

需要导入的库: pygame: 这是一个游戏开发库,用于创建多媒体应用程序,提供了处理图形、声音和输入的功能。 from pygame.locals import *: 导入pygame库中的常量和函数,用于处理事件和输入。 OpenGL.GL: 这是OpenGL的Python绑定…...

leetcode-5-最长回文串

题目描述 给你一个字符串 s,找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。 示例 1: 输入:s “babad” 输出:“bab” 解释:“aba” 同样是符合题意的答案。 示…...

二、Oracle 数据库安装集

一、CentOS 安装 OCI下载地址 1. 启动 # 1. 登录服务器,切换到oracle用户,或者以oracle用户登录 su - oracle# 2. 打开监听服务 lsnrctl start# 3. 查看Oracle监听器运行状况 lsnrctl status# 4. 以sys用户身份登录 sqlplus /nolog# 5. 切换用户conn 用…...

【Python】Python中的常用函数及用法

目录 输入输出类型转换引用哈希字符串常用操作判断类型查找替换大小写转换文本对齐去除空白字符拆分和连接 列表常用操作增删改查增删改统计排序 元组常用操作 字典常用操作 范围随机数学比较常用函数三角函数数学常量 输入 input():从键盘等待用户的输入&#xff0…...

基于JavaEE的ssm公司员工信息管理系统的设计与实现

基于JavaEE的ssm公司员工信息管理系统的设计与实现043 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存…...

cornerstoneJS加载图片(base、矩阵)

cornerstoneJS默认加载dicom影像数据,将识别到的dicom数据转换成imageData数据,在界面上展示。故,cornerstoneJS也可直接加载imageData。 imageData数据的data是一个数组,每四个元素代表一个点,四个元素分别表示R、G、…...

3.Trunc截断函数用法

TRUNC函数用于对值进行截断 用法有两种:TRUNC(NUMBER)表示截断数字,TRUNC(date)表示截断日期 (1)截断数字 格式:TRUNC(n1,n2),n1表示被截断的数字&#xf…...

腾讯云 CODING 荣获 TiD 质量竞争力大会 2023 软件研发优秀案例

点击链接了解详情 8 月 13-16 日,由中关村智联软件服务业质量创新联盟主办的第十届 TiD 2023 质量竞争力大会在北京国家会议中心召开。本次大会以“聚焦数字化转型 探索智能软件研发”为主题,聚焦智能化测试工程、数据要素、元宇宙、数字化转型、产融合作…...

VSCode如何为远程安装预设(固定)扩展

背景 在使用VSCode进行远程开发时(python开发之远程开发工具选择_CodingInCV的博客-CSDN博客),特别是远程的机器经常变化时(如机器来源于动态分配),每次连接新的远程时,都不得不手动安装一些开…...

一文解析HTTP与HTTPS,它们的区别和联系

一文解析HTTP与HTTPS,它们的区别和联系 HTTP和HTTPS之间不同点 尽管HTTP和HTTPS在安全性方面存在差异,但它们仍然共享许多相同的基本特征和功能。这些相同点使得HTTP成为广泛应用的标准协议,并且HTTPS作为更安全的替代方案被广泛采用。HTTP…...

Faster RCNN网络数据流总结

前言 在学习Faster RCNN时,看了许多别人写的博客。看了以后,对Faster RCNN整理有了一个大概的了解,但是对训练时网络内部的数据流还不是很清楚,所以在结合这个版本的faster rcnn代码情况下,对网络数据流进行总结。以便…...

拒绝摆烂!C语言练习打卡第五天

🔥博客主页:小王又困了 📚系列专栏:每日一练 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、选择题 📝1.第一题 📝2.第二题 &#x1f4d…...

关于LambdaQueryWrapper.or()导致错误

这个是原始的代码,到导致一个问题,后面所有的内容,都在这个or的右边,也就是整个查询语句就这一个or,而很明显( xxx or xxx)and()这才是我们要的,所以需要将这…...

Day17-Node后端身份认证-JWT

Day17-Node后端身份验证 一 密码加密 1 MD5加密 创建MD5.js//node提供了一个内置模块crypto用于密码加密 const crypto = require("crypto")module.exports.getMd5 = function(password){const md5...

onvif中imaging setting图像画质总结!

前言: 大家好,今天给大家来分享一篇关于图像质量的内容,这个内容是我在做onvif中的imaging setting的时候,关注到里面有关于: brightness(亮度)color saturation(色彩饱和度)contrast(对比度)sharpness(锐度)white balance(白平衡…...

not in效率低(MYSQL的Not IN、not EXISTS如何优化)

【版权所有,文章允许转载,但须以链接方式注明源地址,否则追究法律责任】【创作不易,点个赞就是对我最大的支持】 前言 仅作为学习笔记,供大家参考 总结的不错的话,记得点赞收藏关注哦! 目录 …...

微信小程序拉起支付报: 调用支付JSAPI缺少参数: total_fee

1. 调用支付JSAPI缺少参数: total_fee 2. 检查返回给前端调起支付的参数是否正确 一开始是params.put("package", prepay_id); 回来改回params.put("package", "prepay_id"prepay_id);...

Thinkphp6 如何 生成二维码

最近需要用到使用到二维码,需要将对应的网址输出生成二维码,Thinkphp6实现还是比较简单的: 第一步:安装 think-qrcode composer require dh2y/think-qrcode第二步:在对应的控制器使用 use dh2y\qrcode\QRcode;第三步&a…...

01.机器学习引言

1.机器学习的步骤 1. 数据搜集 其中数据划分,是将数据集分为训练集、验证集和测试集(通常不考虑时间) 2. 数据清洗 3. 特征工程 提取对象:原始数据(特征提取一般在特征选择之前) 提取目的:…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...