分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
目录
- 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果


基本描述
1.BWO-TCN-Attention数据分类预测程序;
2.无Attention适用于MATLAB 2022b版及以上版本;融合Attention要求Matlab2023版以上;
3.基于白鲸优化算法(BWO)、时间卷积神经网络(TCN)融合注意力机制的数据分类预测程序;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现BWO-TCN-Attention数据分类预测;
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a; % Eq. (2.3) in the paperC=2*r2; % Eq. (2.4) in the paperb=1; % parameters in Eq. (2.5)l=(a2-1)*rand+1; % parameters in Eq. (2.5)p = rand(); % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5 if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测 目录 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.BWO-TCN-Attention数据分类预测程序; 2.无Attention适用于MATLAB 2022b版及以上版本…...
6.链路追踪-Zipkin
链路追踪(Distributed Tracing)是一种用于监视分布式应用程序的技术,通过收集和展示分布式系统中不同组件之间的调用和交互情况,帮助开发人员和运维团队理解系统中的请求流程、性能瓶颈和异常情况。 1.Zipkin Zipkin 是一个开源的…...
基于ACF,AMDF算法的语音编码matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .......................................................................... plotFlag …...
python 基础篇 day 1 初识变量和数据类型
文章目录 变量变量作用——用于存储和表示数据。变量命名规则命名法大驼峰小驼峰下划体n j i a x 通常作为临时变量使用 建议 变量种类全局变量(Global Variables)局部变量(Local Variables)静态变量(Static Variables…...
Window下部署使用Stable Diffusion AI开源项目绘图
Window下部署使用Stable Diffusion AI开源项目绘图 前言前提条件相关介绍Stable Diffusion AI绘图下载项目环境要求环境下载运行项目打开网址,即可体验文字生成图像(txt2img)庐山瀑布 参考 本文里面的风景图,均由Stable Diffusion…...
【MySQL】好好学习一下InnoDB中的页
文章目录 一. 前言二. 从宏观层面看页三. 页的基本内容3.1 页的数据结构3.2 用户空间内的数据行结构3.3 页目录 四. 问题集4.1 索引 和 数据页 有什么区别4.2 页的大小是什么决定的4.3 页的大小对哪些情况有影响4.4 一般情况下说的链表有哪几个4.5 如果页的空间满了怎么办4.6 如…...
git开发常用命令
版本回退 soft:git reset --soft HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到暂存区 mixed(默认):git reset HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到工作区,会…...
WEB APIs day5
一、window对象 BOM属于window对象 1.BOM(浏览器对象模型) bom里面包含着dom,只不过bom我们平时用得比较少,我们经常使用的是dom操作,因为我们页面中的这些标签都是在dom中取的,所以我们操作dom多一点。 window对象…...
html动态爱心代码【一】(附源码)
前言 七夕马上就要到了,为了帮助大家高效表白,下面再给大家带来了实用的HTML浪漫表白代码(附源码)背景音乐,可用于520,情人节,生日,表白等场景,可直接使用。 效果演示 文案修改 var loverNam…...
【仿写tomcat】六、解析xml文件配置端口、线程池核心参数
线程池改造 上一篇文章中我们用了Excutors创建了线程,这里我们将它改造成包含所有线程池核心参数的形式。 package com.tomcatServer.http;import java.util.concurrent.*;/*** 线程池跑龙套** author ez4sterben* date 2023/08/05*/ public class ThreadPool {pr…...
Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果
1. 前言 上文 我们在Windows电脑上实现了人脸功能,接下来我们要把人脸识别的功能移植到Android上。 那么首先第一步,就是要创建一个Native的Android项目,并且配置好OpenGL,并能够调用成功。 这里我们使用的是openCV-4.8.0&#x…...
(1)、扩展SpringCache一站式解决缓存击穿,穿透,雪崩
1、问题描述 我们在使用SpringCache的@Cacheable注解时,发现并没有设置过期时间这个功能。 @Target({ElementType.TYPE, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @I...
Rancher使用cert-manager安装报错解决
报错: rancher-rke-01:~/rke/rancher-helm/rancher # helm install rancher rancher-stable/rancher --namespace cattle-system --set hostnamewww.rancher.local Error: INSTALLATION FAILED: Internal error occurred: failed calling webhook "webhook…...
Harvard transformer NLP 模型 openNMT 简介入门
项目网址: OpenNMT - Open-Source Neural Machine Translation logo: 一,从应用的层面先跑通 Harvard transformer GitHub - harvardnlp/annotated-transformer: An annotated implementation of the Transformer paper. git clone https…...
【数据结构OJ题】用栈实现队列
原题链接:https://leetcode.cn/problems/implement-queue-using-stacks/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 用两个栈实现,一个栈进行入队操作,另一个栈进行出队操作。 出队操作: 当出队的栈…...
通达信指标公式15:除权除息数据统计分析
#1.关于除权除息指标的介绍:本指标是小红牛原创指标之一,觉得有必要研究一下这个问题,所以就花时间整理一下这个指标相关内容,大家可以在本源码基础上,进一步优化自己的思路。本指标为通达信幅图指标,可以做…...
day-27 代码随想录算法训练营(19)回溯part03
39.组合总和 分析:同一个数可以选多次,但是不能有重复的答案; 思路:横向遍历,纵向递归(不同的是递归的时候不需要跳到下一个位置,因为同一个数可以选多次) class Solution { publ…...
CSDN编程题-每日一练(2023-08-22)
CSDN编程题-每日一练(2023-08-22) 一、题目名称:最长递增区间二、题目名称:K树三、题目名称:小Q的价值无向图一、题目名称:最长递增区间 时间限制:1000ms内存限制:256M 题目描述: 给一个无序数组,求最长递增的区间长度。如:[5,2,3,8,1,9] 最长区间 2,3,8 长度为 3。…...
使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务
原文链接:https://forum.laf.run/d/994 大家好!今天这篇文章主要向大家介绍 Sealos 的数据库服务。在 Sealos 上数据库后端服务由 KubeBlocks 提供,为用户的数据库应用保驾护航。无论你是在公有云还是本地环境中使用,Sealos 都能为…...
SFL212B-10-21-15、SFL212B-20-21-40喷嘴挡板伺服阀
SFL212B-05-21-10、SFL212B-10-21-15、SFL212B-20-21-40、SFL212-05-32-10、SFL212-10-32-15、SFL212-20-32-40、SFL212A-05-21-10、SFL212A-10-21-15、SFL212A-20-21-40喷嘴挡板力反馈伺服阀,外置伺服放大器,四通,带阀芯阀套的两级伺服阀&am…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
