【Hibench 】完成 HDP-Spark 性能测试
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁
🦄 个人主页——🎐开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 🎐✨🍁
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥
目录
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁
一、HiBench简介
二、版本和依赖
三、下载和编译
3.1 下载安装包
3.2 HiBench编译
3.3 Hibench目录说明
四、修改配置文件
4.1 hibench.conf
4.2 hadoop.conf
4.3 spark.conf
五、运行测试
5.1 准备数据
5.2 运行测试
5.3 report结果查询
六、遇到的问题
一、HiBench简介
HiBench是Intel推出的一个大数据基准测试工具,可以帮助评估不同的大数据框架在速度、吞吐量和系统资源利用方面评估不同的大数据框架的性能表现。它包含一组Hadoop、Spark和流式WorkLoads,包括Sort、WordCount、TeraSort、Repartition、Sleep、SQL、PageRank、Nutch索引、Bayes、Kmeans、NWeight和增强型DFSIO等。它还包含几个用于Spark Streaming、Flink、Storm和Gearpump的流式WorkLoads。
项目GitHub地址:GitHub - Intel-bigdata/HiBench: HiBench is a big data benchmark suite.
二、版本和依赖
软件 | 版本 |
hadoop | 2.10(官方要求Apache Hadoop 3.0.x, 3.1.x, 3.2.x, 2.x, CDH5, HDP) |
maven | 3.8.5 |
java | 8 |
python | 2.7.5 |
HDP 集群版本信息
Java 和Maven 环境配置
三、下载和编译
3.1 下载安装包
cd /opt
下载并解压wget https://github.com/Intel-bigdata/HiBench/archive/v7.1.1.tar.gz
tar -zxvf v7.1.1.tar.gz
cd HiBench-7.1.1/
3.2 HiBench编译
HiBench编译支持如下几种方式:
- Build All
- Build a specific framework benchmark
- Build a single module
- Build Structured Streaming
在进行Hibench的时候可以指定Spark和Scala的版本,通过如下参数指定
具体参考官网: https://github.com/Intel-bigdata/HiBench/blob/master/docs/build-hibench.md
# 执行全部编译 编译所有框架及模块
./bin/build_all.sh
3.3 Hibench目录说明
- autogen:主要用于生成测试数据的源码目录
- bin:测试脚本放置目录
- common:公共依赖源码目录
- conf:配置文件目录(Hibench/Hadoop/Spark等配置文件存放目录)
- docker:docker 方式部署
- flinkbench:Flink框架源码目录
- gearpumpbench:gearpumpbench框架源码目录
- hadoopbench:hadoop框架源码目录
- sparkbench:spark框架的源码目录
- stormbench:storm框架的源码目录
四、修改配置文件
4.1 hibench.conf
hibench.conf 配置数据集大小和并行度
hibench.scale.profile tiny
# Mapper number in hadoop, partition number in Spark
hibench.default.map.parallelism 8# Reducer nubmer in hadoop, shuffle partition number in Spark
hibench.default.shuffle.parallelism 8
- hibench.scale.profile:主要配置HiBench测试的数据规模,可自定义配置;
- hibench.default.map.parallelism:主要配置MapReduce的Mapper数量;
- hibench.default.shuffle.parallelism:配置Reduce数量;
HiBench的默认数据规模有:tiny, small, large, huge, gigantic andbigdata,在这几种数据规模之外还可以自己指定数据量。
4.2 hadoop.conf
hadoop.conf,配置hadoop集群的相关信息(如下为HDP集群配置)
cp conf/hadoop.conf.template conf/hadoop.confvim conf/hadoop.conf
# Hadoop home
hibench.hadoop.home /usr/hdp/3.1.4.0-315/hadoop# The path of hadoop executable
hibench.hadoop.executable ${hibench.hadoop.home}/bin/hadoop# Hadoop configraution directory
hibench.hadoop.configure.dir ${hibench.hadoop.home}/etc/hadoop# The root HDFS path to store HiBench data
hibench.hdfs.master hdfs://winner# Hadoop release provider. Supported value: apache, cdh5, hdp
hibench.hadoop.release hdp
hibench.hdfs.master 可以在 core-site.xml中的 fs.defaultFS 找到,开启了NameNode高可用 。
4.3 spark.conf
spark.conf,配置hadoop集群的相关信息
cp conf/spark.conf.template conf/spark.conf
vim conf/spark.conf# Spark home
hibench.spark.home /usr/hdp/3.1.4.0-315/spark2
可自定义数据规模
conf/workloads/micro/terasort.conf
#datagen
hibench.terasort.tiny.datasize 32000
hibench.terasort.small.datasize 3200000
hibench.terasort.large.datasize 32000000
hibench.terasort.huge.datasize 320000000
hibench.terasort.gigantic.datasize 3200000000
hibench.terasort.bigdata.datasize 6000000000hibench.workload.datasize ${hibench.terasort.${hibench.scale.profile}.datasize}
## 增加自定义的数据量
#hibench.terasort.myscale.datasize 5242880
#hibench.workload.datasize ${hibench.terasort.${hibench.scale.profile}.datasize}# export for shell script
hibench.workload.input ${hibench.hdfs.data.dir}/Terasort/Input
hibench.workload.output ${hibench.hdfs.data.dir}/Terasort/Output
在 hibench.conf 中 设置 hibench.scale.profile 为 myscale ,默认为 tiny
五、运行测试
5.1 准备数据
HDP 集群开启了 kerberos , 运行脚本使用了 kerberos 用户。如下生成一个WordCount测试数据集。
bin/workloads/micro/wordcount/prepare/prepare.sh
5.2 运行测试
将WordCount基准测试数据集生成后,就可以执行基准测试了,对于WordCount基准测试选择了Spark 运行以下命令即可:
bin/workloads/micro/terasort/spark/run.sh
通过HDFS可以看到/HiBench目录下生成的各个用例生成的测试数据及用例结果
YARN 可以到 任务 ScalaWordCount
5.3 report结果查询
[root@hdp105 HiBench-7.1.1]# cat report/hibench.report
Type Date Time Input_data_size Duration(s) Throughput(bytes/s) Throughput/node
ScalaSparkTerasort 2023-08-16 20:07:22 3200000 46.503 68812 17203
ScalaSparkTerasort 2023-08-16 20:09:26 3200000 38.856 82355 20588
ScalaSparkWordcount 2023-08-17 13:29:46 37181 66.082 562 140
ScalaSparkWordcount 数据大小37181 ,运行时间66.082 ·。 每个用例的测试数据量、运行耗时及吞吐量。如下是生成的日志和统计的指标文件:
即将 wordCount 使用Spark 运行后的 monitor.html 下载到本地 拖到浏览器
/opt/HiBench-7.1.1/report/wordcount/spark/monitor.html
图表展示如下:
Summarized Network throughputs & Packer-per-sedonds
Summarized Memory usage
Summarized Disk throughput & IOPS
六、遇到的问题
build 的时候遇到了 插件下载不了的问题 ,问题如下:
[INFO] mahout 7.1.1 ....................................... FAILURE [ 7.767 s]
[INFO] PEGASUS: A Peta-Scale Graph Mining System 2.0-SNAPSHOT SKIPPED
[INFO] nutchindexing 7.1.1 ................................ SKIPPED
[INFO] stormbench 7.1.1 ................................... SKIPPED
[INFO] stormbench-streaming 7.1.1 ......................... SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 03:07 min
[INFO] Finished at: 2023-08-17T18:56:25+08:00
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal com.googlecode.maven-download-plugin:download-maven-plugin:1.2.0:wget (extra-download-execution) on project mahout: IO Error: Could not get content -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR]
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR] mvn <args> -rf :mahout
报错截图如下:
修改pom文件
hadoopbench/mahout/pom.xml
解决方式: 就是 把插件下载build 部分删除 ,我不用你就行了, 无非构建 慢点。
参考链接:HiBench 7.x 使用问题整理
HiBench大数据基准测试使用 - 知乎
如何使用HiBench进行基准测试_51CTO博客_基准测试
相关文章:

【Hibench 】完成 HDP-Spark 性能测试
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁 🦄 个人主页——🎐开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 🎐✨🍁 🪁🍁 希望本文能够给您带来一定的…...

【C++奇遇记】内存模型
🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集 数据库专栏 初阶数据结构 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如…...

Debootstrap 教程
文章目录 Debootstrap 教程安装 debootstrap使用 debootstrap运行 debootstrap进入新的系统结束语 Debootstrap 教程 debootstrap 是一个用于在 Debian-based 系统上创建一个基本的 Debian 系统的工具。它可以用于创建 chroot 环境、容器或者为新的系统安装做准备。 安装 deb…...

MySQL之InnoDB引擎
MySQL之InnoDB引擎 简介逻辑存储结构InnoDB架构内存架构缓冲池LRU List、Free List和Flush List更改缓冲区(在5.x版本之前叫做插入缓冲区)自适应hash日志缓冲区 磁盘架构System TablespaceFile Per Table TabspaceGeneral TablespceUndo TablespaceTemp …...

API自动化管理: 从繁琐到轻松
在数字化时代,API(应用程序编程接口)在软件开发中扮演着至关重要的角色。然而,API管理可能会变得十分繁琐,耗费大量时间和资源。那么,如何实现API自动化管理,从而节省时间、提高效率,…...

Databend 开源周报第 107 期
Databend 是一款现代云数仓。专为弹性和高效设计,为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务:https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展,遇到更贴近你心意的 Databend 。 理解连接参数 …...

计算机网络参考模型
目录 编辑 简介 1.分层模型 1.1 分层的思想 1.2 OSI参考模型与TCP/IP协议簇 1.OSI 参考模型 2.TCP/IP 参考模型 简介 本章大家将学习网络参考模型的概念,对干参考模型的讲解将会贯穿网络课程的始终,因为它是理解网络这个全新世界的关键所在&…...

【React基础全篇】
文章目录 一、关于 React二、脚手架2.1 create-react-app 脚手架的使用2.2 项目目录解析2.3 抽离配置文件2.4 webpack 二次封装2.4.1 集成 css 预处理器2.4.2 配置解析别名 2.5 setupProxy 代理 三、JSX3.1 jsx 语法详解3.2 React.createElement 四、组件定义4.1 类组件4.2 函数…...
如何使用 Vue.js 侦听嵌套数据?
new Vue({el: "#app",data: {target: {list: [],},},watch: {"target.list": {handler(newVal, oldVal) {},deep: true,},} }); 给target的list属性增加侦听器,需要在watch中使用字符串的写法 "target.list" 来标记侦听的内容 han…...
Spring AOP详解
Spring AOP是Spring框架中的一个模块,它允许开发人员使用面向切面编程(AOP)的思想来解耦系统的不同层次。 Spring AOP的核心概念是切面(aspect)、连接点(join point)、通知(advice)、切点(pointcut)和引入(introduction)。 切面(aspect):切面是一个类, 它…...

linux iptables安全技术与防火墙
linux iptables安全技术与防火墙 1、iptables防火墙基本介绍1.1netfilter/iptables关系1.2iptables防火墙默认规则表、链结构 2、iptables的四表五链2.1四表2.2五链2.3四表五链总结2.3.1 规则链之间的匹配顺序2.3.2 规则链内的匹配顺序 3、iptables的配置3.1iptables的安装3.2i…...

TCP性能机制
延迟应答 为什么有延迟应答 发送方如果长时间没有收到ACK应答,则会触发超时重传机制,重新发送数据包。但如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小,发送方一次只能发少量数据,效率较低。 举个例子理解一…...

qt信号槽同步问题
目录 信号槽: 注意事项: 具体例子: 线程安全问题的例子: 信号槽: 在Qt编程中,信号(Signal)和槽(Slot)是一种用于在对象之间进行通信的机制。信号用于发出…...

七夕特惠-8折抢购,从速
在七夕这个特殊的日子,我们推出了8折优惠活动,具体如下: 不管是充值会员,还是购买套路文章,一律享受8折优惠,活动截止时间为2023年8月24日12时。 甚至还有免费抽奖活动 兑奖方式,复制兑奖码…...
[NLP]LLM--transformer模型的参数量
1. 前言 最近,OpenAI推出的ChatGPT展现出了卓越的性能,引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面:模型参数规模大,训练数据规模大。以GPT3为例,GPT3的参数量…...
5 Python的面向对象编程
概述 在上一节,我们介绍了Python的函数,包括:函数的定义、函数的调用、参数的传递、lambda函数等内容。在本节中,我们将介绍Python的面向对象编程。面向对象编程(Object-Oriented Programming, 即OOP)是一种…...

卷积神经网络——上篇【深度学习】【PyTorch】【d2l】
文章目录 5、卷积神经网络5.1、卷积5.1.1、理论部分5.1.2、代码实现5.1.3、边缘检测 5.2、填充和步幅5.2.1、理论部分5.2.2、代码实现 5.3、多输入多输出通道5.3.1、理论部分5.3.2、代码实现 5.4、池化层 | 汇聚层5.4.1、理论部分5.4.2、代码实现 5、卷积神经网络 5.1、卷积 …...
【从零学习python 】54. 内存中写入数据
文章目录 内存中写入数据StringIOBytesIO进阶案例 内存中写入数据 除了将数据写入到一个文件以外,我们还可以使用代码,将数据暂时写入到内存里,可以理解为数据缓冲区。Python中提供了StringIO和BytesIO这两个类将字符串数据和二进制数据写入…...

速通蓝桥杯嵌入式省一教程:(九)AT24C02芯片(E2PROM存储器)读写操作与I2C协议
AT24C02芯片(又叫E2PROM存储器、EEPROM存储器),是一种通过I2C(IIC)协议通信的掉电保存存储器芯片,其内部含有256个8位字节。在介绍这款芯片之前,我们先来粗略了解一下I2C协议。 I2C总线是一种双向二线制的同步串行总线…...
负载均衡:优化性能与可靠性的关键
在现代互联网时代,数以万计的用户访问着各种在线服务,从即时通讯、社交媒体到电子商务和媒体流媒体,无不需要应对海量的请求和数据传输。在这个高并发的环境下,负载均衡成为了关键的技术,它旨在分散工作负载࿰…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...