6.ES基础概念及术语详细解读
一、Elasticsearch概述:
ES是基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全问搜索引擎,且ES支持RestFulweb风格的url访问。ES是基于Java开发的开源搜索引擎,设计用于云计算,能够达到实时搜索,稳定、可 靠、快速。此外,ES还提供了数据聚合分析功能,但在数据分析方面,es的时效性不是很理想,在企业应用中一般还是用于搜索。ES自2016年起已经超过Solr等,称为排名第一的搜索引擎应用。
1.1 ES、Lucene、solr对比:
Luence是Apache基于Java编写的信息搜索工具包(jar包),它包含了索引结构、读写索引工具、相关性工具、排序等功能,因此Lucene的使用需要我们进一步开发搜索引擎系统, 如果数据获取、解析、分词等。
Solr 是一个有HTTP接口的基于Lucene的查询服务器,是一个搜索引擎系统,系统封装了很多lucene细节,Solr可以直接利用HTTP GET/POST 请求去查询,维护修改索引。Solr利用zookeeper进行分布式管理,它的实现更加全面,官方提供的功能更多。
Elasticsearch 是一个建立在全文搜索引擎Apache Lucene基础上的搜索引擎,采用的策略师分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。
es的实时搜索性比solr更好。
1.2 ES的特性:
- 速度快、易扩展、弹性、灵活、操作简单、多语言客户端、X-Pack、开箱即用。
- 分布式:横向扩展非常灵活 全文检索:基于lucene的强大的全文检索能力;
- 近实时搜索和分析:数据进入ES,可达到近实时搜索,还可进行聚合分析
- 高可用:容错机制,自动发现新的或失败的节点,重组和重新平衡数据
- 模式自由:ES的动态mapping机制可以自动检测数据的结构和类型,创建索引并使数据可搜索。
- RESTful API:JSON + HTTP
二、Elasticsearch基本概念:
2.1 概念:
1.集群(cluster)
一个ES集群由多个节点(node)组成, 每个集群都有一个共同的集群名称最为标识
2.节点(node)
一个es实例即为一个节点,一台机器可以有多个节点,正常使用下每个实例都应该会部署在不同的机器上。ES的配置文件中可以通过node.master、 node.data 来设置节点类型:
node.master: true/false 表示节点是否具有成为主节点的资格
node.data: true/false表示节点是否为存储数据 node.ingest : 执行文档在索引之前的预处理操作、数据转换、清洗、标准化等,一般Pipeline用到
3.索引(index)
一个索引是一个拥有一些相似特征的文档的集合(相当于关系型数据库中的一个数据库)。
例如,您可以拥有一个客户数据的索引,一个商品目录的索引,以及一个订单数据的索引。一个索引通常使用一个名称(所有字母必须小写)来标识,当针对这个索引的文档执行索引、搜索、更新和删除操作的时候,这个名称被用来指向索引。
| es | 关系型数据库 |
|---|---|
| 倒排索引(Inverted index) | 索引(index) |
| 字段(field) | 数据列或字段(column) |
| 文档(document) | 数据行(Row) |
| 映射关系(mapping) | 表结构及字段类型定义(Schema) |
| 类型(type) | 表(table) |
| 索引(index) | 数据库(Database) |
4.分片 (shard)
Elasticsearch可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上,构成分布式搜索。
分片的数量只能在索引创建前指定,并且索引创建后不能更改。
一个分片可以是主分片(用P表示)或副本分片(用R表示)。
Elasticsearch 7.0以下版本默认为一个索引创建5个主分片,并分别为每个主分片创建1个副本分片,7.0及以上版本默认创建1个主分片和1个副本分片。两者区别如下:
| 分片类型 | 支持处理的请求 | 数量是否可以被修改 | 备注 |
|---|---|---|---|
| 主分片 | 支持处理索引和查询请求 | 创建索引时指定,已经创建好的索引无法修改 | 索引内的任意一个文档都存储于索引内某个主分片中,因此主分片的数量和大小决定着索引能够保存的最大数据量,过多的分片个数会导致集群启动压力大,启动、恢复、响应慢 |
| 副分片 | 支持处理查询请求,索引请求需要由主分片同步机制触发 | 可以在创建索引时指定,已经创建好的索引可以动态修改 | 副本的作用体现在两个方面:1. 提高系统容错性,当某个节点或某个分片损坏丢失时可以从副本中恢复。2.提高查询的效率,XH-Elasiticsearch会对搜索请求进行负载均衡 |
相关文章:
6.ES基础概念及术语详细解读
一、Elasticsearch概述: ES是基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全问搜索引擎,且ES支持RestFulweb风格的url访问。ES是基于Java开发的开源搜索引擎,设计用于云计算,能够达到实时搜索,…...
大语言模型微调实践——LoRA 微调细节
1. 引言 近年来人工智能领域不断进步,大语言模型的崛起引领了自然语言处理的革命。这些参数量巨大的预训练模型,凭借其在大规模数据上学习到的丰富语言表示,为我们带来了前所未有的文本理解和生成能力。然而,要使这些通用模型在特…...
国内ChatGPT对比与最佳方案
很久没写内容了,主要还是工作占据了太多时间。简单分享下我这段时间的研究吧,由于时间仓促,有很多内容没有具体写,请自行到我分享的网站体验查看。 前言 ChatGPT 的出现确实在很大程度上改变了世界。许多人已经亲身体验到了ChatGPT作为一个…...
绝美的古诗词AI作画,惊艳到我了!
前言 时光荏苒,科技的飞速发展催生出了许多令人惊叹的创新成果。近年来,人工智能技术在艺术领域的应用日益引人注目,其中最为引人瞩目的莫过于AI作画。这项技术将传统的古诗词与现代的人工智能相结合,创造出一幅幅令人叹为观止的…...
数据结构—排序
8.排序 8.1排序的概念 什么是排序? 排序:将一组杂乱无章的数据按一定规律顺序排列起来。即,将无序序列排成一个有序序列(由小到大或由大到小)的运算。 如果参加排序的数据结点包含多个数据域,那么排序往…...
GraphScope,开源图数据分析引擎的领航者
文章首发地址 GraphScope是一个开源的大规模图数据分析引擎,由Aliyun、阿里巴巴集团和华为公司共同开发。GraphScope旨在为大规模图数据处理和分析提供高性能、高效率的解决方案。 Github地址: https://github.com/alibaba/GraphScope GraphScope 的重…...
【Linux】邮件服务器搭建 postfix+dovecot+mysql (终极版 超详细 亲测多遍无问题)
🍁博主简介 🏅云计算领域优质创作者 🏅华为云开发者社区专家博主 🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 文章目录 前言基础原理准备工作一 、安装关于权…...
GitLab与GitLab Runner安装(RPM与Docker方式),CI/CD初体验
背景 GitLab 是一个强大的版本控制系统和协作平台,记录一下在实际工作中关于 GitLab 的安装使用记录。 一开始使用 GitLab 时,是在 CentOS7 上直接以 rpm 包的方式进行安装,仅作为代码托管工具来使用,版本: 14.10.4 …...
vue3+element下拉多选框组件
<!-- 下拉多选 --> <template><div class"select-checked"><el-select v-model"selected" :class"{ all: optionsAll, hidden: selectedOptions.data.length < 2 }" multipleplaceholder"请选择" :popper-app…...
Python科研绘图--Task02
目录 图形元素 画布 (fifigure)。 坐标图形 (axes),也称为子图。 轴 (axis) :数据轴对象,即坐标轴线。 刻度 (tick),即刻度对象。 图层顺序 轴比例和刻度 轴比例 刻度位置和刻度格式 坐标系 直角坐标系 极坐标系 地理…...
[保研/考研机试] KY11 二叉树遍历 清华大学复试上机题 C++实现
题目链接: 二叉树遍历_牛客题霸_牛客网编一个程序,读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。题目来自【牛客题霸】https://www.nowcoder.com/share/jump/43719512169254700747…...
【官方中文文档】Mybatis-Spring #简介
简介 什么是 MyBatis-Spring? MyBatis-Spring 会帮助你将 MyBatis 代码无缝地整合到 Spring 中。它将允许 MyBatis 参与到 Spring 的事务管理之中,创建映射器 mapper 和 SqlSession 并注入到 bean 中,以及将 Mybatis 的异常转换为 Spring 的…...
稳定扩散ControlNet v1.1 权威指南
ControlNet 是一种稳定扩散模型,可让你从参考图像中复制构图或人体姿势。 经验丰富的稳定扩散用户知道生成想要的确切成分有多难。图像有点随机。你所能做的就是玩数字游戏:生成大量图像并选择你喜欢的图片。 借助 ControlNet,稳定扩散用户…...
【golang】结构体及其方法的使用(struct)
函数是独立的程序实体。我们可以声明有名字的函数,也可以声明没名字的函数,还可以把它们当做普通的值传来传去。我们能把具有相同签名的函数抽象成独立的函数类型,以作为一组输入、输出(或者说一类逻辑组件)的代表。 …...
【数据结构】-- 排序算法习题总结
排序 时间复杂度 空间复杂度 稳定性 冒泡排序 O(n^2) 优化后O(n) O(1) 稳定 快速排序 最好O(n*logn) 最坏O(n^2) 最好O(logn) 最坏O(n) 不稳定直接插入排序…...
第十章 CUDA流(stream)实战篇
cuda教程目录 第一章 指针篇 第二章 CUDA原理篇 第三章 CUDA编译器环境配置篇 第四章 kernel函数基础篇 第五章 kernel索引(index)篇 第六章 kenel矩阵计算实战篇 第七章 kenel实战强化篇 第八章 CUDA内存应用与性能优化篇 第九章 CUDA原子(atomic)实战篇 第十章 CUDA流(strea…...
如何进行电脑文件夹分类与整理?
本科电脑用了四年,毕业后发现空间很满,但是真正有用的东西仿佛就一点。好像是在学开发的时候,听到一个老师说,根目录不要放太多文件夹,不然就相当于没有根目录了。刚好研究生有了新的台式电脑,开始有规划的…...
kafka-python 消费者消费不到消息
排除步骤1: 使用group_id”consumer_group_id_001“ 和 auto_offset_reset"earliest" from kafka import KafkaConsumerconsumer KafkaConsumer(bootstrap_servers["dev-kafka01.test.xxx.cloud:9092"],enable_auto_commitTrue, auto_commit…...
穿起“新架构”的舞鞋,跳一支金融数字化转型的华尔兹
华尔兹,是男女两位舞者,通过形体的控制,舞步技巧的发挥,完美配合呈现而出的一种舞蹈形式。华尔兹舞姿,如行云流水、潇洒自如、飘逸优美,素有“舞中皇后”的美称。 在跳华尔兹的时候,如果舞者双…...
SpringBoot 常用注解
随着Spring及Spring Boot的发展,基于Java的配置已经慢慢替代了基于xml的配置形式。本篇文章为大家整理和简介Spring Boot中常用的注解及其功能。 SpringBoot注解 SpringBootApplication:开启Spring Boot自动配置的核心注解,相关等同于Configu…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
从零手写Java版本的LSM Tree (一):LSM Tree 概述
🔥 推荐一个高质量的Java LSM Tree开源项目! https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree,专为高并发写入场景设计。 核心亮点: ⚡ 极致性能:写入速度超…...
