【LeetCode-面试经典150题-day7】
392.判断子序列
题意:
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,
"ace"是"abcde"的一个子序列,而"aec"不是)。
【输入样例】
s="abc",t="ahbgdc"
【输出样例】true
解题思路:
双指针枚举
class Solution {public boolean isSubsequence(String s, String t) {//双指针int i=0,j=0;while(i < s.length() && j < t.length()){if(s.charAt(i) == t.charAt(j)){//相等了,指针往后++i;++j;}else{//相等的情况下只移动j++j;}}if(i == s.length()){return true;}else{return false;}}
}
时间: 击败了88.73%
内存: 击败了86.35%
167.两数之和Ⅱ-输入有序数组
题意:
给你一个下标从 1 开始的整数数组
numbers,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数target的两个数。如果设这两个数分别是numbers[index1]和numbers[index2],则1 <= index1 < index2 <= numbers.length。以长度为 2 的整数数组
[index1, index2]的形式返回这两个整数的下标index1和index2。你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间
【输入样例】
numbers=[2,7,11,15],target=9
【输出样例】[1,2]
解题思路:
双指针枚举,一个从前开始往后走(i),一个从后往前走(j)。
题目说,对应一个唯一的答案,且i<j
两者往中间靠拢,当numbers[i]+numbers[j]>target时,由于numbers[i]是较小值,所以太大了要减少较大值,--j,同理当小于target时,要增加较小值;
注意下标从1开始,所以赋值给ans数组时下标都要+1.
class Solution {public int[] twoSum(int[] numbers, int target) {//下标从1开始噢//双指针i,j 如果i+j小于target,增加i//如果i+j大于target,减少jint[] ans= new int[2];int i=0,j=numbers.length - 1;while(i<j){//不会相等,所以i<jif(numbers[i] + numbers[j] == target){ans[0] = i+1;ans[1] = j+1;return ans;}if(numbers[i] + numbers[j] < target){++i;}if(numbers[i] + numbers[j] > target){--j;}}return ans;}
}
时间: 击败了98.30%
内存:击败了75.64%
相关文章:
【LeetCode-面试经典150题-day7】
392.判断子序列 题意: 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是&quo…...
00-音视频-概述
有很多场合会使用的音视频,比如安防、视频闸机、影音播放器、视频通话,短视频等等。 从摄像头采集到用户观看,这中间涉及到了很多技术。 用户一般观看的高清视频1080P30帧。若按24位RGB对视频进行存储,一个60分钟视频所占空间 …...
SOFARPC(笔记)
文章目录 一、快速开始1.1 SOFARPC1.2 基于SOFABoot 二、注册中心三、通讯协议2.1 Bolt基本发布调用方式超时控制协议泛化调用序列化协议自定义线程池 2.2 RESTful基本使用 2.3 其他协议四、架构 附录 官方样例下载地址-sofa-boot-guides 可查看 SOFARPC 方式快速入门 一、快…...
无线上网连接及配置
目录 1. 无线上网连接及配置 1.1 无线路由器连接方式 编辑 1.2 无线路由器的基本配置 1.配置用户计算机上的IP地址 2.访问无线路由Web管理界面 1.3 WAN 口设置 1.动态 IP 2.静态 IP 1. 无线上网连接及配置 一小型公司共有20名员工。由于公司业务需要访问Internet&…...
Webpack减少打包数量和体积(Umi 3.*中)
在UMI 3.*中配置: export default defineConfig({chunks: [vendors, umi],chainWebpack: function (config: any, { webpack }: any) {config.plugin(chunkPlugin).use(webpack.optimize.LimitChunkCountPlugin, [{maxChunks: 5, // 必须大于或等于 1,此…...
python Crypto 包安装
经测试使用 pip install pycrypto安装会出现,如下所示错误: pip install pycrypto -i https://pypi.douban.com/simple/ Looking in indexes: https://pypi.douban.com/simple/ Collecting pycrypto Using cached https://pypi.doubanio.com/packages/…...
时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测
时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现SO-CNN-LSTM蛇群…...
前端开发,怎么解决浏览器兼容性问题? - 易智编译EaseEditing
解决浏览器兼容性问题是前端开发中常见的挑战之一。不同的浏览器可能对网页元素的渲染和功能支持有所不同,因此需要采取一些策略来确保您的网页在不同浏览器上都能正常运行和呈现。以下是一些解决浏览器兼容性问题的方法和策略: 使用CSS Resetÿ…...
树莓派3B安装64位操作系统
树莓派3B安装Ubuntu MATE_树莓派3b 安装ubuntu_雨田大大的博客-CSDN博客https://blog.csdn.net/lsjackson13/article/details/92423694?utm_mediumdistribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-92423694-blog-80716098.235%5Ev38%5Ep…...
Mysql系列 - 第2天:详解mysql数据类型(重点)
这是mysql系列第2篇文章。 环境:mysql5.7.25,cmd命令中进行演示。 主要内容 介绍mysql中常用的数据类型 mysql类型和java类型对应关系 数据类型选择的一些建议 MySQL的数据类型 主要包括以下五大类 整数类型:bit、bool、tinyint、smal…...
Linux常用的运维命令
1.查看进程按内存从大到小排序 ps -e -o "%C:%p:%z:%a"|sort -k5 -nr2.查看磁盘和分区信息 # 查看挂接的分区状态mount | column -t# 查看所有分区 fdisk -l# 查看所有交换分区 swapon -s3.查看网络信息 ifconfig # 查看所有网络接口的属性iptables -L…...
【从零学习python 】50.面向对象编程中的多态应用
文章目录 多态场景代码实现多态总结 进阶案例 多态 面向对象的三大特性: 封装:这是定义类的准则,根据对象的特点,将行为和属性抽象出来,封装到一个类中。继承:这是设计类的技巧。父类与子类,主…...
实现Token刷新机制
问题场景: 开发的项目中,如果正在项目中编辑信息,编辑信息的时间的过程中token失效可能导致信息丢失怎么办? 一、解决方法 实现Token刷新机制:客户端定时刷新token,当用户的token即将过期时,可以向服务器…...
FlaUi输入账号密码
FlaUI是一个用于自动化Windows桌面应用程序的开源UI自动化库,通常用于自动化Windows应用程序的测试和操作。如果你想使用FlaUI来输入账号和密码,你需要编写一些C#或其他支持.NET的编程代码来实现这一目标。以下是一个使用FlaUI来输入账号和密码的简单示例…...
ModStartBlog v8.0.0 博客归档页面,部分组件升级
ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用,支持后台一键快速安装,让开发者能快的实现业务功能开发。 系统完全开源,基于 Apache 2.0 开源协议。 功能特性 丰富的模块市场,后台一键快速安装会…...
使用 PyTorch 进行高效图像分割:第 4 部分
一、说明 在这个由 4 部分组成的系列中,我们将使用 PyTorch 中的深度学习技术从头开始逐步实现图像分割。本部分将重点介绍如何实现基于视觉转换器的图像分割模型。 图 1:使用视觉转换器模型架构运行图像分割的结果。 从上到下,输入图像、地面…...
西班牙卡瓦起泡酒的风味搭配
卡瓦是一种对食物友好的西班牙起泡酒,它的制作方法和香槟一样,可以和类似的食物搭配。卡瓦食物搭配包括各种食物,从海鲜和鱼到火腿,以及不同类型的小吃,也可以将卡瓦酒与甜点、水果和奶酪搭配。 卡瓦酒是世界上最著名的…...
Java项目-苍穹外卖-Day05
文章目录 1. 新增套餐1.1 需求分析和设计1.2 代码实现1.2.1 DishController1.2.2 DishService1.2.3 DishServiceImpl1.2.4 DishMapper1.2.5 DishMapper.xml1.2.6 SetmealController1.2.7 SetmealService1.2.8 SetmealServiceImpl1.2.9 SetmealMapper1.2.10 SetmealMapper.xml1.…...
取模运算符在数组下标的应用
什么是取模运算符%? 定义: a mod b,设a、b属于正整数且b>0,如果q、r属于正整数满足aq*br,且0≤r<b,则定义: a mod b r 注意:取模运算符两侧的除数和被除数都是整数ÿ…...
Firefox(火狐),使用技巧汇总,问题处理
本文目的 说明火狐如何安装在C盘之外的盘,即定制安装路径。如何将同步功能切换到本地服务上。默认是国际服务器。安装在C盘之后如何解决,之前安装的扩展无法自动同步的问题。顺带讲解一下,火狐的一些比较好用的扩展。 安装路径定制 火狐目前…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
Springboot 高校报修与互助平台小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,高校报修与互助平台小程序被用户普遍使用,为…...
MLP实战二:MLP 实现图像数字多分类
任务 实战(二):MLP 实现图像多分类 基于 mnist 数据集,建立 mlp 模型,实现 0-9 数字的十分类 task: 1、实现 mnist 数据载入,可视化图形数字; 2、完成数据预处理:图像数据维度转换与…...
链结构与工作量证明7️⃣:用 Go 实现比特币的核心机制
链结构与工作量证明:用 Go 实现比特币的核心机制 如果你用 Go 写过区块、算过哈希,也大致理解了非对称加密、数据序列化这些“硬核知识”,那么恭喜你,现在我们终于可以把这些拼成一条完整的“区块链”。 不过别急,这一节我们重点搞懂两件事: 区块之间是怎么连接成“链”…...
