当前位置: 首页 > news >正文

BUGFix:onnx -> TensorRT转换过程失败

先附上相关的onnx2trt的部分代码:

def onnx2trt(onnx_path):logger = trt.Logger(trt.Logger.ERROR)builder = trt.Builder(logger)network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))parser = trt.OnnxParser(network, logger)parser.parse_from_file(onnx_path)config = builder.create_builder_config()config.max_workspace_size=max_workspace_sizeconfig.set_flag(trt.BuilderFlag.FP16)op = builder.create_optimization_profile()# op.set_shape('model0/input', (1, )+shape, (batch_size[0], )+shape, (batch_size[1], )+shape)op.set_shape(network.get_input(0).name, (min_batch_size, )+input_shape, (opt_batch_size, )+input_shape, (max_batch_size, )+input_shape)config.add_optimization_profile(op)engine = builder.build_engine(network, config)# trt_path = onnx_path.replace('/onnx/', '/trt/').replace('.onnx', '.plan')trt_path = onnx_path.replace('.onnx', '.plan')with open(trt_path,'wb') as f:f.write(engine.serialize())

在onnx转换TensorRT的过程中,提示15行代码有错误:
config.max_workspace_size=max_workspace_size
其中,max_workspace_size = 1<<30 
# 首先单位是字节,比如 builder.max_workspace_size = 1<< 30 就是 2^30 bytes 即 1 GB。
# 它的作用是给出模型中任一层能使用的内存上限。运行时,每一层需要多少内存系统分配多少,并不是每次都分 1 GB,但不会超过 1 GB。


具体报错信息如下:


TypeError: deserialize_cuda_engine(): incompatible function arguments. The following argument types are supported:1. (self: tensorrt.tensorrt.Runtime, serialized_engine: buffer) -> tensorrt.tensorrt.ICudaEngineInvoked with: <tensorrt.tensorrt.Runtime object at 0x7feecb3c6530>, None

上面这错误可能是由于max_workspace_size分配不够导致的错误,可试着将30放大,但是我这里不管用;
原因是构建nvidia-docker时候,设置 --shm-size =32,共享内存的太小,不支持onnx-TensorRT的操作,这里修改为64,问题得以解决; 

有问题随时交流,欢迎一键三连~

参考:
https://www.cnblogs.com/mrlonely2018/p/14841562.html

 

相关文章:

BUGFix:onnx -> TensorRT转换过程失败

先附上相关的onnx2trt的部分代码&#xff1a; def onnx2trt(onnx_path):logger trt.Logger(trt.Logger.ERROR)builder trt.Builder(logger)network builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))parser trt.OnnxParser(netw…...

FFMPEG小白常用命令行

序列帧转H264视频 ffmpeg -r 60 -f image2 -s 1920x1080 -i fram%d.jpg -vcodec libx264 -crf 25 -pix_fmt yuv420p test.mp4 -vcodec h264 .\ffmpeg -r 60 -f image2 -s 1920x1080 -i %04d.jpeg -vcodec h264 test.mp4 %04d 表示用零来填充直到长度为4&#xff0c;i.e 000…...

个性定制还是纯粹简约:探寻界面选择背后的心理宇宙

在数码世界中&#xff0c;我们的界面选择成为了一张架起的桥梁&#xff0c;连接着个性的渴望与效率的追求。当我们面对个性化定制界面和极简版原装界面&#xff0c;我们仿佛站在了一座分岔路口&#xff0c;左右各有一片令人心驰神往的风景。究竟是走向五光十色的个性世界&#…...

【Java 高阶】一文精通 Spring MVC - 转发重定向(四)

&#x1f449;博主介绍&#xff1a; 博主从事应用安全和大数据领域&#xff0c;有8年研发经验&#xff0c;5年面试官经验&#xff0c;Java技术专家&#xff0c;WEB架构师&#xff0c;阿里云专家博主&#xff0c;华为云云享专家&#xff0c;51CTO 专家博主 ⛪️ 个人社区&#x…...

嵌入式Linux开发实操(十):ADC接口开发

#前言 ADC就是模数转换,可以用来接一些模拟量设备,所谓模拟量就是波形不是方波而是各种包络形状的波形的信号,比如电压、电流等电信号或压力、温度、湿度、位移、声音等非电信号,ADC就是将这些信号转换为数字方波信号,以便于信息传递的。 #ADC硬件设计 key按键连接了AD…...

精进语言模型:探索LLM Training微调与奖励模型技术的新途径

大语言模型训练&#xff08;LLM Training&#xff09; LLMs Trainer 是一个旨在帮助人们从零开始训练大模型的仓库&#xff0c;该仓库最早参考自 Open-Llama&#xff0c;并在其基础上进行扩充。 有关 LLM 训练流程的更多细节可以参考 【LLM】从零开始训练大模型。 使用仓库之…...

数据采集:selenium 提取 Cookie 自动登陆

写在前面 工作需要&#xff0c;简单整理博文内容涉及 通过 selenium 实现自动登陆理解不足小伙伴帮忙指正 对每个人而言&#xff0c;真正的职责只有一个&#xff1a;找到自我。然后在心中坚守其一生&#xff0c;全心全意&#xff0c;永不停息。所有其它的路都是不完整的&#x…...

[Go版]算法通关村第十三关黄金——数字数学问题之数论问题(最大公约数、素数、埃氏筛、丑数)

目录 题目&#xff1a;辗转相除法&#xff08;求最大公约数&#xff09;思路分析&#xff1a;辗转相除法&#xff08;也叫欧几里得算法&#xff09;gcd(a,b) gcd(b,a mod b)复杂度&#xff1a;时间复杂度 O ( n l o g ( m a x ) ) O(nlog(max)) O(nlog(max))、空间复杂度 O (…...

Qt双击某一文件通过自己实现的程序打开,并加载文件显示

双击启动 简述方法一方法二注意 简述 在Windows系统中&#xff0c;双击某类扩展名的文件&#xff0c;通过自己实现的程序打开文件&#xff0c;并正确加载及显示文件。有两种方式可以到达这个目的。 对于系统不知道的扩展名的文件&#xff0c;第一次打开时&#xff0c;需要自行…...

硬件产品的量产问题------硬件工程师在产线关注什么

前言&#xff1a; 产品开发测试无误&#xff0c;但量产缺遇到很多不良甚至DOA问题。 硬件开发过程中如何确保产线的治具、生产及硬件工程师在产线需要关注一些什么。 坚信&#xff1a;好的产品是要可以做出来的。 1、禁忌&#xff1a; 禁忌热插拔&#xff1b;禁忌测试不防呆…...

Vulnhub系列靶机--- Hackadmeic.RTB1

系列&#xff1a;Hackademic&#xff08;此系列共2台&#xff09; 难度&#xff1a;初级 信息收集 主机发现 netdiscover -r 192.168.80.0/24端口扫描 nmap -A -p- 192.168.80.143访问80端口 使用指纹识别插件查看是WordPress 根据首页显示的内容&#xff0c;点击target 点击…...

redis高级----------主从复制

redis的四种模式&#xff1a;单例模式&#xff1b;主从模式&#xff1b;哨兵模式&#xff0c;集群模式 一、主从模式 单例模式虽然操作简单&#xff0c;但是不具备高可用 缺点&#xff1a; 单点的宕机引来的服务的灾难、数据丢失单点服务器内存瓶颈&#xff0c;无法无限纵向扩…...

posgresql通过PL/pgSQL脚本统一修改某字段大小写

项目在做postgresql数据库适配时遇到了某些问题&#xff0c;需要统一将某个模式含id字段的全部表&#xff0c;将id字段由小写转换为大写&#xff0c;可以通过PL/pgSQL脚本实现。 先确保当前用户有足够的权限 DO $$ DECLARE current_table text;current_column text; BEGIN --…...

iPhone卫星通信SOS功能如何在灾难中拯救生命

iPhone上的卫星紧急求救信号功能在从毛伊岛野火中拯救一家人方面发挥了至关重要的作用。这是越来越多的事件的一部分&#xff0c;在这些事件中&#xff0c;iPhone正在帮助人们摆脱危及生命的情况。 卫星提供商国际通信卫星组织负责移动的高级副总裁Mark Rasmussen在接受Lifewir…...

NOIP真题答案 过河 数的划分

过河 题目描述 在河上有一座独木桥&#xff0c;一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子&#xff0c;青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数&#xff0c;我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点&#xf…...

图为科技-边缘计算在智慧医疗领域的作用

边缘计算在智慧医疗领域的作用 随着科技的进步&#xff0c;智慧医疗已成为医疗行业的重要发展趋势。边缘计算作为新兴技术&#xff0c;在智慧医疗领域发挥着越来越重要的作用。本文将介绍边缘计算在智慧医疗领域的应用及其优势&#xff0c;并探讨未来发展方向。 一、边缘计算…...

Linux配置nginx反向代理

在云服务器上部署高并发的服务&#xff0c;使用Nginx作为反向代理是一种常见的做法&#xff0c;可以实现流量分发、负载均衡&#xff0c;同时提升系统的可靠性和性能。 步骤概览&#xff1a; 安装Nginx&#xff1a; 确保服务器已安装Nginx。若未安装&#xff0c;可使用适用于你…...

随便记录记录

统一整理一下各种 pandas读csv import pandas as pd ## 默认会将第一行作为列 df pd.read_csv(path_to_your_file.csv) ## 传递 headerNone 参数来告诉 Pandas 不要将第一行 df pd.read_csv(path_to_your_file.csv, headerNone) ## 使用多种选项来处理数据&#xff0c;如指…...

UbuntuDDE 23.04发布,体验DeepinV23的一个新选择

UbuntuDDE 23.04发布&#xff0c;体验DeepinV23的一个新选择 昨晚网上搜索了一圈&#xff0c;无意看到邮箱一条新闻&#xff0c;UbuntuDDE 23.04发布了 因为前几天刚用虚拟机安装过&#xff0c;所以麻溜的从网站下载了ISO文件&#xff0c;安装上看看。本来没多想&#xff0c;…...

RabbitMQ 消费者

RabbitMQ的消费模式分两种&#xff1a;推模式和拉模式&#xff0c;推模式采用Basic.Consume进行消费&#xff0c;拉模式则是调用Basic.Get进行消费。   消费者通过订阅队列从RabbitMQ中获取消息进行消费&#xff0c;为避免消息丢失可采用消费确认机制 消费者 拉模式拉模式的实…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...