Python Opencv实践 - 图像直方图均衡化
import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
print(img.shape)#图像直方图计算
#cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate)
#images:原图像(图像格式为 uint8 或 float32)。当传入函数时应该 用中括号 [] 括起来,例如:[img]。
#channels:同样需要用中括号括起来,它会告诉函数我们要统计那幅图 像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像 的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。
#mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如 果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并 使用它。
#histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
#ranges: 像素值范围,通常为 [0,256]
#hist:是一个 256x1 的数组作为返回值,每一个值代表了与次灰度值对应的像素点数目。
#accumulate:是一个布尔值,用来表示直方图是否叠加。
#参考资料:https://blog.csdn.net/yukinoai/article/details/87900860
hist_b = cv.calcHist([img], [0], None, [256], [0,256])
hist_g = cv.calcHist([img], [1], None, [256], [0,256])
hist_r = cv.calcHist([img], [2], None, [256], [0,256])
#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].set_title("Original Histogram")
axes[0][1].plot(hist_b, color='b')
axes[0][1].plot(hist_g, color='g')
axes[0][1].plot(hist_r, color='r')#彩色图像直方图均衡化
#cv.equalizeHist(src)
#参考资料:https://blog.csdn.net/qq_37701443/article/details/103564379
def RGBImageHistEqualize(src):hsv = cv.cvtColor(src, cv.COLOR_RGB2HSV)channels = cv.split(hsv)#对亮度通道进行直方图均衡化cv.equalizeHist(channels[2], channels[2])hsv = cv.merge(channels)src = cv.cvtColor(hsv, cv.COLOR_HSV2RGB)return src
img_hist_equalized = RGBImageHistEqualize(img)
hist_equalized_b = cv.calcHist([img_hist_equalized], [0], None, [256], [0,256])
hist_equalized_g = cv.calcHist([img_hist_equalized], [1], None, [256], [0,256])
hist_equalized_r = cv.calcHist([img_hist_equalized], [2], None, [256], [0,256])#显示直方图均衡化后的结果
axes[1][0].imshow(img_hist_equalized[:,:,::-1])
axes[1][0].set_title("Equalized")
axes[1][1].set_title("Equalized Histogram")
axes[1][1].plot(hist_equalized_b, color='b')
axes[1][1].plot(hist_equalized_g, color='g')
axes[1][1].plot(hist_equalized_r, color='r')



相关文章:
Python Opencv实践 - 图像直方图均衡化
import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像直方图计算 #cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate) #images&…...
GAN:对抗生成网络,前向传播和后巷传播的区别
目录 GAN:对抗生成网络 损失函数 判别器开始波动很大,先调整判别器 生成样本和真实样本的统一:真假难辨编辑 文字专图片编辑 头像转表情包编辑 头像转3D编辑 后向传播 1. 前向传播(forward) 2. 反向传播&…...
压力变送器的功能与应用
压力变送器是用于测量气体或者液体等介质压力的设备,能够将压力转化为4 G信号传输到监控平台,工作人员可以在电脑或者手机上登录平台查看监测到的数据,并根据数据制定下一步的计划。 压力变送器的功能: 压力变送器采用了高性能感…...
排序算法:选择排序
选择排序的思想是:双重循环遍历数组,每经过一轮比较,找到最小元素的下标,将其交换至首位。 public static void selectionSort(int[] arr) {int minIndex;for (int i 0; i < arr.length - 1; i) {minIndex i;for (int j i …...
Windows运行Spark所需的Hadoop安装
解压文件 复制bin目录 找到winutils-master文件hadoop对应的bin目录版本 全部复制替换掉hadoop的bin目录文件 复制hadoop.dll文件 将bin目录下的hadoop.dll文件复制到System32目录下 配置环境变量 修改hadoop-env.cmd配置文件 注意jdk装在非C盘则完全没问题,如果装在…...
KusionStack使用文档
下载安装 1. 安装 Kusionup 如果想自定义默认安装版本,可以运行下述命令(将最后的 openlatest 替换为你想要默认安装的版本号就就行): curl -s "http://kusion-public.oss-cn-hzfinance.aliyuncs.com/cli/kusionup/script…...
ONLYOFFICE 文档如何与 Alfresco 进行集成
ONLYOFFICE 文档是一款开源办公套件,其是包含文本文档、电子表格、演示文稿、数字表单、PDF 查看器和转换工具的协作性编辑工具。要在 Alfresco 中使用 ONLYOFFICE 协作功能,可以将他们连接集成。阅读本文,了解这如何实现。 关于 ONLYOFFICE…...
PostgreSQL下载路径与安装步骤
PgSQL介绍 PgSQL和MySQL一样是一种关系模型的数据库,全称为PostgreSQL 数据库。 优势:PgSQL是一种可扩展、可靠、可定制的数据库管理系统,具有良好的数据完整性和安全性,支持多种操作系统,包括 Linux、Windows、MacOS …...
如何在PHP中编写条件语句
引言 决策是生活不可缺少的一部分。从平凡的着装决定,到改变人生的工作和家庭决定。在开发中也是如此。要让程序做任何有用的事情,它必须能够对某种输入做出响应。当用户点击网站上的联系人按钮时,他们希望被带到联系人页面。如果什么都没有…...
LLM架构自注意力机制Transformers architecture Attention is all you need
使用Transformers架构构建大型语言模型显著提高了自然语言任务的性能,超过了之前的RNNs,并导致了再生能力的爆炸。 Transformers架构的力量在于其学习句子中所有单词的相关性和上下文的能力。不仅仅是您在这里看到的,与它的邻居每个词相邻&…...
计算机网络 QA
DNS 的解析过程 浏览器缓存。当用户通过浏览器访问某域名时,浏览器首先会在自己的缓存中查找是否有该域名对应的 IP 地址(曾经访问过该域名并且没有清空缓存)系统缓存。当浏览器缓存中无域名对应的 IP 地址时,会自动检测用户计算机…...
安果天气预报 产品介绍
软件介绍版本号 2.0.5 安果天气预报:全世界覆盖,中国定制 想要查找北京、上海、纽约、东京还是巴黎的天气?一款简约的天气预 报应用为你呈现。专注于为用户提供纯净的天气体验,我们不发送任何打扰的通知。包含空气质量、能见度、…...
net start Mysql 启动服务时 ,显示“Mysql服务正在启动 Mysql服务无法启动 服务没有报告任何错误
一、问题 有时候,输入net start Mysql 启动服务时 mysql>net start Mysql 显示 Mysql服务正在启动 Mysql服务无法启动 服务没有报告任何错误 二、原因 由于mysql的默认端口是3306,因此在启动服务的时候,如果此端口被占用,就会出…...
DAY24
题目一 啊 看着挺复杂 其实很简单 第一种方法 就是纵轴是怪兽编号 横轴是能力值 看看能不能打过 逻辑很简单 看看能不能打得过 打过的就在花钱和直接打里面取小的 打不过就只能花钱 这种方法就导致 如果怪兽的能力值很大 那么我们就需要很大的空间 所以引出下一种做法 纵…...
Redis过期数据的删除策略
1 介绍 Redis 是一个kv型数据库,我们所有的数据都是存放在内存中的,但是内存是有大小限制的,不可能无限制的增量。 想要把不需要的数据清理掉,一种办法是直接删除,这个咱们前面章节有详细说过;另外一种就是…...
如何使用CSS实现一个拖拽排序效果?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 实现拖拽排序效果的CSS和JavaScript示例⭐ HTML 结构⭐ CSS 样式 (styles.css)⭐ JavaScript 代码 (script.js)⭐ 实现说明⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦…...
leetcode 118.杨辉三角
⭐️ 题目描述 🌟 leetcode链接:https://leetcode.cn/problems/pascals-triangle/description/ 代码: class Solution { public:vector<vector<int>> generate(int numRows) {// 先开空间vector<vector<int>> v;v.…...
微服务框架之SpringBoot面试题汇总
微服务框架之SpringBoot面试题汇总 什么是Spring Boot? 多年来,随着新功能的增加,spring变得越来越复杂。Spring项目,我们必须添加构建路径或添加Maven依赖关系,配置应用程序服务器,添加spring配置。因此&…...
Promise详解
目录 一、前言:为什么会出现Promise?二、Promise是什么?2.1 Promise的初体验 三、使用Promise的好处?3.1 指定回调函数的方式更加灵活3.2 可以解决回调地狱问题,支持链式调用 四、Promise实例对象的两个属性五、resolve函数以及reject函数六、Promise…...
Oracle 查询(当天,月,年)的数据
Trunc 在oracle中,可利用 trunc函数 查询当天数据,该函数可用于截取时间或者数值,将该函数与 select 语句配合使用可查询时间段数据 查询当天数据 --sysdate是获取系统当前时间函数 --TRUNC函数用于截取时间或者数值,返回指定的…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
