深入浅出Pytorch函数——torch.nn.init.calculate_gain
分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init
模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()
模式下运行,autograd
不会将其考虑在内。
该函数对于给定的非线性函数,返回推荐的增益值。这些值如下所示:
Nonlinearity | Gain |
---|---|
Linear / Identity | 1 1 1 |
Conv1D / Conv2D / Conv3D | 1 1 1 |
Sigmoid | 1 1 1 |
Tanh | 5 3 \frac{5}{3} 35 |
ReLU | 2 \sqrt{2} 2 |
Leaky Relu | 2 1 + negative_slope 2 \sqrt{\frac{2}{1+\text{negative\_slope}^2}} 1+negative_slope22 |
SELU | 4 3 \frac{4}{3} 34 |
为了实现自归一化神经网络,应该使用nonlinearity='linear'
而不是nonlinearity='selu'
。这使得初始权重的方差为 1 N \frac{1}{N} N1,这对于在前向通道中引入稳定的固定点是必要的。相比之下,SELU的默认增益牺牲了矩形层中更稳定梯度流的归一化效应。
语法
torch.nn.init.calculate_gain(nonlinearity, param=None)
参数
nonlinearity
:[nn.functional
] 非线性函数名称param
:非线性函数的可选参数
实例
# leaky_relu with negative_slope=0.2
gain = nn.init.calculate_gain('leaky_relu', 0.2)
函数实现
def calculate_gain(nonlinearity, param=None):r"""Return the recommended gain value for the given nonlinearity function.The values are as follows:================= ====================================================nonlinearity gain================= ====================================================Linear / Identity :math:`1`Conv{1,2,3}D :math:`1`Sigmoid :math:`1`Tanh :math:`\frac{5}{3}`ReLU :math:`\sqrt{2}`Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`SELU :math:`\frac{3}{4}`================= ====================================================.. warning::In order to implement `Self-Normalizing Neural Networks`_ ,you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.This gives the initial weights a variance of ``1 / N``,which is necessary to induce a stable fixed point in the forward pass.In contrast, the default gain for ``SELU`` sacrifices the normalisationeffect for more stable gradient flow in rectangular layers.Args:nonlinearity: the non-linear function (`nn.functional` name)param: optional parameter for the non-linear functionExamples:>>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2.. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html"""linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']if nonlinearity in linear_fns or nonlinearity == 'sigmoid':return 1elif nonlinearity == 'tanh':return 5.0 / 3elif nonlinearity == 'relu':return math.sqrt(2.0)elif nonlinearity == 'leaky_relu':if param is None:negative_slope = 0.01elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):# True/False are instances of int, hence check abovenegative_slope = paramelse:raise ValueError("negative_slope {} not a valid number".format(param))return math.sqrt(2.0 / (1 + negative_slope ** 2))elif nonlinearity == 'selu':return 3.0 / 4 # Value found empirically (https://github.com/pytorch/pytorch/pull/50664)else:raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
相关文章:
深入浅出Pytorch函数——torch.nn.init.calculate_gain
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...
【PHP】PHP入门指南:从基础到进阶
PHP(Hypertext Preprocessor)是一种广泛使用的服务器端脚本语言,尤其在Web开发领域有着重要的地位。本文旨在为初学者提供一份详尽的PHP入门指南,帮助您了解PHP的基础知识和语法,掌握基本的编程技巧,并熟悉…...
【100天精通python】Day45:python网络爬虫开发_ Scrapy 爬虫框架
目录 1 Scrapy 的简介 2 Scrapy选择器 3 快速创建Scrapy 爬虫 4 下载器与爬虫中间件 5 使用管道Pielines 1 Scrapy 的简介 Scrapy 是一个用于爬取网站数据并进行数据提取的开源网络爬虫框架。它使用 Python 编程语言编写,并提供了一套强大的工具和库࿰…...

怎么写出更好的高质量内容输出
为了更好地输出高质量的内容,不仅仅需要了解写作的基本原则,还需要深入挖掘目标读者的需求、持续的自我提升以及对信息的严格筛选。以下是一些建议,帮助你更好地输出高质量的内容: 1.充分了解你的受众 调查和了解你的目标读者&am…...

HJ31 单词倒排 题解
题目描述:单词倒排_牛客题霸_牛客网 (nowcoder.com) 对字符串中的所有单词进行倒排。 1、构成单词的字符只有26个大写或小写英文字母; 2、非构成单词的字符均视为单词间隔符; 3、要求倒排后的单词间隔符以一个空格表示;如果原字符…...

LeetCode42.接雨水
这道题呢可以按列来累加,就是先算第1列的水的高度然后再加上第2列水的高度……一直加到最后就是能加的水的高度,我想到了这里然后就想第i列的水其实就是第i-1列和i1列中最小的高度减去第i列的高度,但是其实并不是,比如示例中的第5…...

优化时间流:区间调度问题的探索与解决
在浩如烟海的信息时代,时间的有效管理成为了一门不可或缺的艺术。无论是生活中的琐事,还是工作中的任务,时间都在无声地流逝,挑战着我们的智慧。正如时间在日常生活中具有的宝贵价值一样,在计算机科学领域,…...

【Python】强化学习:原理与Python实战
搞懂大模型的智能基因,RLHF系统设计关键问答 RLHF(Reinforcement Learning with Human Feedback,人类反馈强化学习)虽是热门概念,并非包治百病的万用仙丹。本问答探讨RLHF的适用范围、优缺点和可能遇到的问题ÿ…...
设计模式——合成复用原则
文章目录 合成复用原则设计原则核心思想合成案例聚合案例继承案例优缺点 合成复用原则 原则是尽量使用合成/聚合的方式,而不是使用继承 设计原则核心思想 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。…...

基于OpenCV实战(基础知识一)
目录 简介 1.计算机眼中的图像 2.图片的读取、显示与保存 3.视频的读取与显示 简介 OpenCV是一个流行的开源计算机视觉库,由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包,可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和…...
如何高效的接入第三方接口
作为程序员的我们,经常会接到领导的安排,接入某某的接口,方面我们如何如何, 例如:领导在1号时给作为员工的你说,最近系统需要增加一个新的支付方式,一会和对方技术组建一个群,有什么问题,可以直接在群里说,最近还说,尽快接入,客户等着用,让你在5号前,完成接入工…...
docker pip下载依赖超时或失败问题解决
Docker容器使用pip安装Python库时超时,可能是由于多种原因。以下是一些建议和解决方法: 使用国内镜像源: 如果你位于中国,可以尝试更换到国内的镜像源。例如,可以使用阿里云、腾讯云、清华大学提供的镜像。 你可以在Dockerfile中添…...

python并发编程
一、程序提速的方法 二、python对并发编程的支持 多线程:threading,利用CPU和IO可以同时执行的原理,让CPU不会干巴巴等待IO完成;多进程:multiprocess,利用多核CPU的能力,真正的并行执行任务&am…...
【面试题】:前端怎么实现权限设计及遇到的bug
一.权限的概念 前端权限分为页面权限、按钮权限、API权限。 二.页面权限的实现过程 ①用户登录进去调用获取用户信息接口,后端会给我们返回一个权限标识符 ②在获取到数据之后,我们就要判断用户能访问到哪些页面,我们可以在vuex中permission模块中的action…...

Vue 2 插槽
可以先阅读组件基础-简单了解通过插槽分发内容。 一、插槽定义 插槽将子组件标签间的内容分发到子组件模板的<slot>标签位置。 如果没有<slot>标签,那么该内容将被丢弃。 二、编译作用域 内容在哪个作用域编译,就可以访问哪个作用域的数据…...

Spring 容器启动耗时统计
为了了解 Spring 为什么会启动那么久,于是看了看怎么统计一下加载 Bean 的耗时。 极简版 几行代码搞定。 import org.springframework.beans.BeansException; import org.springframework.beans.factory.config.BeanPostProcessor;import java.util.HashMap; imp…...
1. 优化算法学习
参考文献 1609:An overview of gradient descent optimization algorithms 从 SGD 到 Adam —— 深度学习优化算法概览(一) - 知乎 机器学习札记 - 知乎...

再获荣誉丨通付盾WAAP解决方案获“金鼎奖”优秀金融科技解决方案
今年四月,2023中国国际金融展在首钢会展中心成功落下帷幕。中国国际金融展作为金融开放创新成果的展示、交流、传播平台,历经多年发展,已成为展示中国金融发展成就、宣传金融改革成果、促进金融产业创新和推动金融信息化发展的有效平台。 “金鼎奖”评选…...

【腾讯云 TDSQL-C Serverless 产品测评】“橡皮筋“一样的数据库『MySQL高压篇』
【腾讯云 TDSQL-C Serverless 产品测评】"橡皮筋"一样的数据库 活动介绍服务一览何为TDSQL ?Serverless 似曾相识? 降本增效,不再口号?动手环节 --- "压力"山大实验前瞻稍作简介资源扩缩范围(CCU&…...
python http文件上传
server端代码 import os import cgi from http.server import SimpleHTTPRequestHandler, HTTPServer# 服务器地址和端口 host = 0.0.0.0 port = 8080# 处理文件上传的请求 class FileUploadHandler(SimpleHTTPRequestHandler):def do_POST(self):# 解析多部分表单数据form = …...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...