当前位置: 首页 > news >正文

pytorch基于ray和accelerate实现多GPU数据并行的模型加速训练

在pytorch的DDP原生代码使用的基础上,ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。

以下为极简的代码示例。

ray

ray.py

#coding=utf-8
import os
import sys
import time
import numpy as np
import torch
from torch import nn
import torch.utils.data as Data
import ray
from ray.train.torch import TorchTrainer
from ray.air.config import ScalingConfig
import onnxruntime# bellow code use AI model to simulate linear regression, formula is: y = x1 * w1 + x2 * w2 + b
# --- DDP RAY --- # # model structure
class LinearNet(nn.Module):def __init__(self, n_feature):super(LinearNet, self).__init__()self.linear = nn.Linear(n_feature, 1)def forward(self, x):y = self.linear(x)return y# whole train task
def train_task():print("--- train_task, pid: ", os.getpid())# device settingdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("device:", device)device_ids = torch._utils._get_all_device_indices()print("device_ids:", device_ids)if len(device_ids) <= 0:print("invalid device_ids, exit")return# prepare datanum_inputs = 2num_examples = 1000true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)# load databatch_size = 10dataset = Data.TensorDataset(features, labels)data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)for X, y in data_iter:print(X, y)breakdata_iter = ray.train.torch.prepare_data_loader(data_iter)# model define and initmodel = LinearNet(num_inputs)ddp_model = ray.train.torch.prepare_model(model)print(ddp_model)# cost functionloss = nn.MSELoss()# optimizeroptimizer = torch.optim.SGD(ddp_model.parameters(), lr=0.03)# trainnum_epochs = 6for epoch in range(1, num_epochs + 1):batch_count = 0sum_loss = 0.0for X, y in data_iter:output = ddp_model(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad()l.backward()optimizer.step()batch_count += 1sum_loss += l.item()print('epoch %d, avg_loss: %f' % (epoch, sum_loss / batch_count))# save modelprint("save model, pid: ", os.getpid())torch.save(ddp_model.module.state_dict(), "ddp_ray_model.pt")def ray_launch_task():num_workers = 2scaling_config = ScalingConfig(num_workers=num_workers, use_gpu=True)trainer = TorchTrainer(train_loop_per_worker=train_task, scaling_config=scaling_config)results = trainer.fit()def predict_task():print("--- predict_task")# prepare datanum_inputs = 2num_examples = 20true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)model = LinearNet(num_inputs)model.load_state_dict(torch.load("ddp_ray_model.pt"))model.eval()x, y = features[6], labels[6]pred_y = model(x)print("x:", x)print("y:", y)print("pred_y:", y)if __name__ == "__main__":print("==== task begin ====")print("python version:", sys.version)print("torch version:", torch.__version__)print("model name:", LinearNet.__name__)ray_launch_task()# predict_task()print("==== task end ====")

accelerate

acc.py

#coding=utf-8
import os
import sys
import time
import numpy as np
from accelerate import Accelerator
import torch
from torch import nn
import torch.utils.data as Data
import onnxruntime# bellow code use AI model to simulate linear regression, formula is: y = x1 * w1 + x2 * w2 + b
# --- accelerate --- # # model structure
class LinearNet(nn.Module):def __init__(self, n_feature):super(LinearNet, self).__init__()self.linear = nn.Linear(n_feature, 1)def forward(self, x):y = self.linear(x)return y# whole train task
def train_task():print("--- train_task, pid: ", os.getpid())# device settingdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("device:", device)device_ids = torch._utils._get_all_device_indices()print("device_ids:", device_ids)if len(device_ids) <= 0:print("invalid device_ids, exit")return# prepare datanum_inputs = 2num_examples = 1000true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)# load databatch_size = 10dataset = Data.TensorDataset(features, labels)data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)for X, y in data_iter:print(X, y)break# model define and initmodel = LinearNet(num_inputs)# cost functionloss = nn.MSELoss()# optimizeroptimizer = torch.optim.SGD(model.parameters(), lr=0.03)accelerator = Accelerator()model, optimizer, data_iter = accelerator.prepare(model, optimizer, data_iter) # automatically move model and data to gpu as config# trainnum_epochs = 3for epoch in range(1, num_epochs + 1):batch_count = 0sum_loss = 0.0for X, y in data_iter:output = model(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad()accelerator.backward(l)optimizer.step()batch_count += 1sum_loss += l.item()print('epoch %d, avg_loss: %f' % (epoch, sum_loss / batch_count))# save modeltorch.save(model, "acc_model.pt")def predict_task():print("--- predict_task")# prepare datanum_inputs = 2num_examples = 20true_w = [2, -3.5]true_b = 3.7features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b + torch.tensor(np.random.normal(0, 0.01, size=num_examples), dtype=torch.float)model = torch.load("acc_model.pt")model.eval()x, y = features[6], labels[6]pred_y = model(x)print("x:", x)print("y:", y)print("pred_y:", y)if __name__ == "__main__":# launch method: use command line# for example# accelerate launch ACC.py print("python version:", sys.version)print("torch version:", torch.__version__)print("model name:", LinearNet.__name__)train_task()predict_task()print("==== task end ====")

相关文章:

pytorch基于ray和accelerate实现多GPU数据并行的模型加速训练

在pytorch的DDP原生代码使用的基础上&#xff0c;ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。 以下为极简的代码示例。 ray ray.py #codingutf-8 import os import sys import time import numpy as np import torch from torch import nn im…...

[蓝帽杯 2022 初赛]domainhacker

打开流量包&#xff0c;追踪TCP流&#xff0c;看到一串url编码 放到瑞士军刀里面解密 最下面这一串会觉得像base64编码 删掉前面两个字符就可以base64解码 依次类推&#xff0c;提取到第13个流&#xff0c;得到一串编码其中里面有密码 导出http对象 发现最后有个1.rar文件 不出…...

在 Pytorch 中使用 TensorBoard

机器学习的训练过程中会产生各类数据&#xff0c;包括 “标量scalar”、“图像image”、“统计图diagram”、“视频video”、“音频audio”、“文本text”、“嵌入Embedding” 等等。为了更好地追踪和分析这些数据&#xff0c;许多可视化工具应运而生&#xff0c;比如之前介绍的…...

Grafana Dashboard 备份方案

文章目录 Grafana Dashboard 备份方案引言工具简介支持的组件要求配置备份安装使用 pypi 安装grafana备份工具配置环境变量使用Grafana Backup Tool 进行备份恢复备份 Grafana Dashboard恢复 Grafana Dashboard结论Grafana Dashboard 备份方案 引言 每个使用 Grafana 的同学都…...

opencv-疲劳检测-眨眼检测

#导入工具包 from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2FACIAL_LANDMARKS_68_IDXS OrderedDict([("mouth", (48, 68)),("right_eyebrow",…...

2023-08-24力扣每日一题

链接&#xff1a; 1267. 统计参与通信的服务器 题意&#xff1a; 同行同列可以发生通信&#xff0c;求能发生通信的机器数量 解&#xff1a; 标记每行/每列的机器个数即可 实际代码&#xff1a; #include<bits/stdc.h> using namespace std; class Solution { pub…...

蚂蚁数科持续发力PaaS领域,SOFAStack布局全栈软件供应链安全产品

8月18日&#xff0c;记者了解到&#xff0c;蚂蚁数科再度加码云原生PaaS领域&#xff0c;SOFAStack率先完成全栈软件供应链安全产品及解决方案的布局&#xff0c;包括静态代码扫描Pinpoint、软件成分分析SCA、交互式安全测试IAST、运行时防护RASP、安全洞察Appinsight等&#x…...

Java后端开发面试题——消息中间篇

RabbitMQ-如何保证消息不丢失 交换机持久化&#xff1a; Bean public DirectExchange simpleExchange(){// 三个参数&#xff1a;交换机名称、是否持久化、当没有queue与其绑定时是否自动删除 return new DirectExchange("simple.direct", true, false); }队列持久化…...

C++ Windows API IsDebuggerPresent的作用

IsDebuggerPresent 是 Windows API 中的一个函数&#xff0c;它用于检测当前运行的程序是否正在被调试。当程序被如 Visual Studio 这样的调试器附加时&#xff0c;此函数会返回 TRUE&#xff1b;否则&#xff0c;它会返回 FALSE。 这个函数经常被用在一些安全相关的场景或是防…...

【JVM 内存结构 | 程序计数器】

内存结构 前言简介程序计数器定义作用特点示例应用场景 主页传送门&#xff1a;&#x1f4c0; 传送 前言 Java 虚拟机的内存空间由 堆、栈、方法区、程序计数器和本地方法栈五部分组成。 简介 JVM&#xff08;Java Virtual Machine&#xff09;内存结构包括以下几个部分&#…...

华为云Stack的学习(一)

一、华为云Stack架构 1.HCS 物理分散、逻辑统一、业务驱动、运管协同、业务感知 2.华为云Stack的特点 可靠性 包括整体可靠性、数据可靠性和单一设备可靠性。通过云平台的分布式架构&#xff0c;从整体系统上提高可靠性&#xff0c;降低系统对单设备可靠性的要求。 可用性…...

人类反馈强化学习RLHF;微软应用商店推出AI摘要功能

&#x1f989; AI新闻 &#x1f680; 微软应用商店推出AI摘要功能&#xff0c;快速总结用户对App的评价 摘要&#xff1a;微软应用商店正式推出了AI摘要功能&#xff0c;该功能能够将数千条在线评论总结成一段精练的文字&#xff0c;为用户选择和下载新应用和游戏提供参考。该…...

day1:前端缓存问题

❝ 「目标」: 持续输出&#xff01;每日分享关于web前端常见知识、面试题、性能优化、新技术等方面的内容。篇幅不会过长&#xff0c;方便理解和记忆。 ❞ ❝ 「主要面向群体&#xff1a;」前端开发工程师&#xff08;初、中、高级&#xff09;、应届、转行、培训等同学 ❞ Day…...

学习网络编程No.4【socket编程实战】

引言 北京时间&#xff1a;2023/8/19/23:01&#xff0c;耍了好几天&#xff0c;主要归咎于《我欲封天》这本小说&#xff0c;听了几个晚上之后逐渐入门&#xff0c;在闲暇时间又看了一下&#xff0c;小高潮直接来临&#xff0c;最终在三个昼夜下追完了&#xff0c;哈哈哈&…...

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 四)

Observed装饰器和ObjectLink装饰器&#xff1a;嵌套类对象属性变化 上文所述的装饰器仅能观察到第一层的变化&#xff0c;但是在实际应用开发中&#xff0c;应用会根据开发需要&#xff0c;封装自己的数据模型。对于多层嵌套的情况&#xff0c;比如二维数组&#xff0c;或者数…...

arcgis--坐标系

1、arcgis中&#xff0c;投影坐标系的y坐标一定是7位数&#xff0c;X坐标有两种&#xff1a;6位和8位。 6位&#xff1a;省略带号&#xff0c;这是中央经线形式的投影坐标&#xff0c;一般投影坐标中会带CM字样&#xff1b;8位&#xff1a;包括带号&#xff0c;一般投影坐标中…...

LFS学习系列 第5章. 编译交叉工具链(1)

5.1 介绍 本章介绍如何构建交叉编译器及其相关工具。尽管这里的交叉编译是“伪造”、“假装”的&#xff0c;但其原理与真正的交叉工具链相同。 本章中编译的程序将安装在$LFS/tools目录下&#xff0c;以使它们与以下章节中安装的文件分离。而另一方面&#xff0c;库被安装到…...

网络互联与互联网 - TCP 协议详解

文章目录 1 概述2 TCP 传输控制协议2.1 报文格式2.2 三次握手&#xff0c;建立连接2.3 四次挥手&#xff0c;释放连接 3 扩展3.1 实验演示3.2 网工软考 1 概述 在 TCP/IP 协议簇 中有两个传输协议 TCP&#xff1a;Transmission Control Protocol&#xff0c;传输控制协议&…...

开源在线图片设计器,支持PSD解析、AI抠图等,基于Puppeteer生成图片

Github 开源地址: palxiao/poster-design 项目速览 git clone https://github.com/palxiao/poster-design.git cd poster-design npm run prepared # 快捷安装依赖指令 npm run serve # 本地运行将同时运行前端界面与图片生成服务(3000与7001端口)&#xff0c;合成图片时…...

在Linux系统上安装和配置Redis数据库,无需公网IP即可实现远程连接的详细解析

文章目录 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址4.3 使用固定的tcp地址连接 Redis作为一款高速缓存的key value键值对的数据库,在…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

麒麟系统使用-进行.NET开发

文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的&#xff0c;如果需要进行.NET开发&#xff0c;则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET&#xff0c;所以要进…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...

无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技

无需布线的革命&#xff1a;电力载波技术赋能楼宇自控系统 在楼宇自动化领域&#xff0c;传统控制系统依赖复杂的专用通信线路&#xff0c;不仅施工成本高昂&#xff0c;后期维护和扩展也极为不便。电力载波技术&#xff08;PLC&#xff09;的突破性应用&#xff0c;彻底改变了…...

标注工具核心架构分析——主窗口的图像显示

&#x1f3d7;️ 标注工具核心架构分析 &#x1f4cb; 系统概述 主要有两个核心类&#xff0c;采用经典的 Scene-View 架构模式&#xff1a; &#x1f3af; 核心类结构 1. AnnotationScene (QGraphicsScene子类) 主要负责标注场景的管理和交互 &#x1f527; 关键函数&…...