GEE/PIE遥感大数据处理与应用
随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。
为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)和航天宏图的PIE Engine等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。作为国内最先进的遥感云平台,PIE Engine近年来发展发非常迅速,拥有丰富的国产卫星数据,以及中国区域的其它重要开源数据,在数据安全性和访问便利性方面具有独到的优势。与传统的处理影像工具(例如ENVI)相比,遥感云平台一方面提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。
一、初识GEE和PIE遥感云平台
1. GEE和PIE平台及典型应用案例介绍
2. JavaScript基础,包括变量,运算符,数组,判断及循环语句等
3. 遥感云重要概念与典型数据分析流程
4. 遥感云基本对象及平台上手
· 影像与影像集
· 几何体、要素与要素集
· 日期、字符、数字
· 数组、列表、字典
· 影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等
主要对象最常用API介绍
二、GEE和PIE影像大数据处理基础
1. . 关键知识点
· 影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等
· 影像掩码,裁剪和镶嵌
· 集合对象的循环迭代(map/iterate)
· 集合对象联合(Join)
· 影像面向对象分析
2. 2. 主要功能
· Landsat/Sentinel-2影像批量去云
· Landsat/Sentinel-2传感器归一化、植被指数计算等
时间序列光学影像的平滑与空间插值
三、数据整合Reduce
1. 关键知识点
· 影像与影像集整合,如指定时窗的年度影像合成
· 影像区域统计与领域统计,分类后处理
· 要素集属性列统计
· 栅格与矢量的相互转换
· 分组整合与区域统计
· 影像集、影像和要素集的线性回归分析
2. 主要功能
· 研究区可用Landsat影像的数量和无云观测数量的统计分析
· 中国区域年度NDVI植被数合成及年度最绿的DOY时间查找
· 国家尺度30年尺度的降雨量时空变化趋势分析
四、云端数据可视化
1. 关键知识点
· 要素与要素集属性制图(条形图、直方图、堆积柱形图、散点图等)
· 影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)
· 影像集制图(样点时间序列图、区域统计时间序列图等)
· 数组与链表制图(散点图、样线图等)
· 图形风格和属性设置
2. 主要功能
· 基于MODIS时间序列影像的不同地表植被物候分析与制图
·基于Hansen产品的年度森林时空变化分析与专题图绘制
五、数据导入导出及资产管理
1. 关键知识点
· 不同矢量数据上传个人资产
· 影像数据上传个人资产、属性设置等
· 影像批量导出(Asset和Driver)
· 矢量数据导出(Asset和Driver)
· 空间统计分析结果导出
2. 主要功能
· PIE平台国产卫星数据下载
· 影像合成批量导出及下载
· 地面样地对应遥感指标数据导出
六、机器学习算法
1. 关键知识点
· 样本抽样(随机抽样、分层随机抽样)
· 监督分类算法(随机森林、CART、贝叶斯、SVM、决策树等)
· 非监督分类算法(wekaKMeans、wekaLVQ等)
· 分类精度评估
2. 主要功能
· 联合光学与雷达时间序列影像的森林动态监测
· 水体自动提取与洪涝监测
七、案例
1. GEE土地利用分类综合案例,实现主要功能串讲,包括地面样本准备、多源遥感影像预处理、算法开发、分类后处理、精度评估和空间统计分析与制图等环节
2. 经典PIE案例代码
· 夜间灯光指数提取
· 长时间尺度植被覆盖度反演
· 水域动态监测
· 农作物种植面积提取
· 荒漠化程度提取
3. 人口密度动态变化分析
GEE与PIE平台切换、代码优化、常见错误与调试总结
阅读全文点击《GEE/PIE遥感大数据处理与应用》
相关文章:
GEE/PIE遥感大数据处理与应用
随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提…...
● 647. 回文子串 ● 516.最长回文子序列
647. 回文子串 class Solution { public:int countSubstrings(string s) {vector<vector<bool>>dp(s.size(),vector<bool>(s.size(),false));int res0;for(int is.size()-1;i>0;i--){for(int ji;j<s.size();j){if(s[i]s[j]){if(j-i<1){res;dp[i][…...
Mysql group by使用示例
文章目录 1. groupby时不能查询*2. 查询出的列必须在group by的条件列中3. group by多个字段,这些字段都有索引也会索引失效,只有group by单个字段索引才能起作用4. having条件必须跟group by相关联5. 用group by做去重6. 使用聚合函数做数量统计7. havi…...
淘宝商品详情采集接口item_get-获得淘宝商品详情(可高并发线程)
获得淘宝商品详情页面数据采集如下: taobao.item_get 公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)注册key账号接入secretString是调用密钥api_nameString是API接口名称(包括在请求地址中࿰…...
uniapp写公众号h5开发 附件上传 下载功能
一。 uni-app实现文件上传功能 目前,找到一款第三方插件 文件上传插件地址 https://ext.dcloud.net.cn/plugin?id=1015 将插件下载并导入项目中直接拿来使用,插件市场也有对改插件用法的描述。 用法: 1. 以下代码写于根目录下第一个view顶部或跟在自定义导航栏后面 // 以…...
机器学习基础09-审查分类算法(基于印第安糖尿病Pima Indians数据集)
算法审查是选择合适的机器学习算法的主要方法之一。审查算法前并 不知道哪个算法对问题最有效,必须设计一定的实验进行验证,以找到对问题最有效的算法。本章将学习通过 scikit-learn来审查六种机器学习的分类算法,通过比较算法评估矩阵的结果…...
C++ sort与优先队列排序的区别
int main() {vector<int> data{3, 1, 2};cout << "从小到大排序" << endl;sort(data.begin(), data.end(), std::less<int>());printContainer(data);auto cmp1 [](int x, int y) { return x < y; };sort(data.begin(), data.end(), cmp…...
【Rust】Rust学习 第十九章高级特征
现在我们已经学习了 Rust 编程语言中最常用的部分。在第二十章开始另一个新项目之前,让我们聊聊一些总有一天你会遇上的部分内容。你可以将本章作为不经意间遇到未知的内容时的参考。本章将要学习的功能在一些非常特定的场景下很有用处。虽然很少会碰到它们…...
C++ 纯虚函数和虚函数的区别
在 C 中,虚函数(Virtual Function)和纯虚函数(Pure Virtual Function)都是用于实现多态性的机制,但它们之间有一些关键的不同。 虚函数(Virtual Function) 定义:在基类…...
Go中的有限状态机FSM的详细介绍 _
1、FSM简介 1.1 有限状态机的定义 有限状态机(Finite State Machine,FSM)是一种数学模型,用于描述系统在不同状态下的行为和转移条件。 状态机有三个组成部分:状态(State)、事件(…...
Python入门教程 | Python3 基本数据类型
赋值 Python 中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。 在 Python 中,变量就是变量,它没有类型,我们所说的"类型"是变量所指的内存中对象的类型。 等号(ÿ…...
STM32移植u8g2玩转oled 用软件iic实现驱动oled
移植u8g2到stm int fputc(int ch,FILE *f) {ITM_SendChar(ch);return (ch); }void delay_us(uint32_t time) {uint32_t i8*time;while(i--); }uint8_t STM32_gpio_and_delay(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {//printf("%s:msg %d,arg_int …...
C++ 学习系列 -- string 实现
string是C标准库的重要部分,主要用于字符串处理。这里我们自己实现一个简单版本的 string. 一 思路 string 类中应该包含如下: 1. 类成员变量:char* m_data,利用 char* 指针存放字符串 2. 成员函数: 2.1 size(…...
C语言小练习(三)
🌞 “也许你感觉自己与周遭格格不入,但正是那些你一人度过的时光,让你变得越来越有意思,等有天别人终于注意到你的时候,他们就会发现一个比他们想象中更酷的人。”-《生活大爆炸》 Day03 📝 一.选择题&…...
2023 js逆向爬虫 有道翻译 代码
前置条件:nodejs环境、安装 crypto 和 python3环境 js.js文件: const crypto require("crypto")function decode(resp_data) {g_o ydsecret://query/key/B*RGygVywfNBwpmBaZg*WT7SIOUP2T0C9WHMZN39j^DAdaZhAnxvGcCY6VYFwnHlg_n ydsecre…...
【物联网无线通信技术】NFC从理论到实践(FM17XX)
NFC,全称是Near Field Communication,即“近场通信”,也叫“近距离无线通信”。NFC诞生于2004年,是基于RFID非接触式射频识别技术演变而来,由当时的龙头企业NXP(原飞利浦半导体)、诺基亚以及索尼联合发起。NFC采用13.5…...
Python爬虫猿人学逆向系列——第六题
题目:采集全部5页的彩票数据,计算全部中奖的总金额(包含一、二、三等奖) 地址:https://match.yuanrenxue.cn/match/6 本题比较简单,只是容易踩坑。话不多说请看分析。 两个参数,一个m一个f&…...
idea使用tomcat
1. 建立javaweb项目 2. /WEB-INF/web.xml项目配置文件 如果javaweb项目 先建立项目,然后在项目上添加框架支持,选择javaee 3. 项目结构 4.执行测试:...
搭建Tomcat HTTP服务:在Windows上实现外网远程访问的详细配置与设置教程
文章目录 前言1.本地Tomcat网页搭建1.1 Tomcat安装1.2 配置环境变量1.3 环境配置1.4 Tomcat运行测试1.5 Cpolar安装和注册 2.本地网页发布2.1.Cpolar云端设置2.2 Cpolar本地设置 3.公网访问测试4.结语 前言 Tomcat作为一个轻量级的服务器,不仅名字很有趣࿰…...
Java学习笔记——继承(包括this,super的使用总结)
继承: 使用情景:当类与类之间,存在相同(共性)的内容,并满足子类是父类的一种,就可以考虑使用继承,来优化代码 Java中提供一个关键字extends,用这个关键字,我…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
