基于Googlenet深度学习网络的交通工具种类识别matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览


2.算法运行软件版本
matlab2022a
3.部分核心程序
....................................................................................% 获取网络层名称和类别数
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的特征学习器层和分类器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...'Name', 'Coal Feature Learner', ...'WeightLearnRateFactor', 10, ...'BiasLearnRateFactor', 10);New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 替换原网络中的特征学习器层和分类器层
Network_Architecture = layerGraph(net);New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);analyzeNetwork(New_Network)% 训练设置参数
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...'MiniBatchSize', Minibatch_Size, ...'MaxEpochs', maxEpochs, ...'InitialLearnRate', 1e-3, ...'Shuffle', 'every-epoch', ...'ValidationData', Resized_Validation_Dataset, ...'ValidationFrequency', Validation_Frequency, ...'Verbose', false, ...'Plots', 'training-progress');
% 在调整后的数据集上训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练后的网络模型
save gnet.mat
50
4.算法理论概述
VGG在2014年由牛津大学著名研究组vGG (Visual Geometry Group)提出,斩获该年lmageNet竞赛中Localization Task (定位任务)第一名和 Classification Task (分类任务)第二名。Classification Task (分类任务)的第一名则是GoogleNet 。GoogleNet是Google研发的深度网络结构,之所以叫“GoogLeNet”,是为了向“LeNet”致敬.人员行为动作识别是计算机视觉和深度学习领域的重要应用之一。近年来,深度学习网络在人员行为动作识别中取得了显著的成果。
1. 原理
1.1 深度学习与卷积神经网络(CNN)
深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提取。卷积神经网络(CNN)是深度学习中的一种重要结构,特别适用于图像识别任务。它通过卷积层、池化层和全连接层来逐层提取和学习图像的特征。
1.2 GoogLeNet
GoogLeNet 是一个深度卷积神经网络,由 Google 在 2014 年提出。它通过引入 Inception 模块来解决深层网络中参数过多和计算量大的问题。Inception 模块使用不同大小的卷积核和池化操作并行提取特征,然后将它们拼接在一起,从而获得更丰富的特征表示。
GoogLenet网络亮点
1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

2. 实现过程
2.1 数据预处理
在矿石种类识别任务中,首先需要准备标注好的数据集,包含不同行为动作的图像或视频帧。然后,将图像进行预处理,包括图像尺寸调整、归一化等操作,以便输入到深度学习网络中。
2.2 构建网络模型
GoogLeNet 模型可以通过深度学习框架如 TensorFlow 或 PyTorch 构建。模型的基本结构包括卷积层、池化层、Inception 模块和全连接层。可以根据具体任务进行网络的修改和定制。
2.3 数据输入与训练
将预处理后的图像作为输入,通过前向传播得到网络的输出。然后,通过与标签进行比较,计算损失函数并进行反向传播,更新网络的权重参数。通过多次迭代训练,使得网络逐渐学习到特征并提高识别能力。
2.4 模型评估与调优
在训练过程中,需要将数据集划分为训练集、验证集和测试集。通过验证集监控模型的性能,并根据验证集的表现进行模型的调优。在测试集上进行评估,得到模型在未见过数据上的识别准确率.
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于Googlenet深度学习网络的交通工具种类识别matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ....................................................................................% 获…...
R语言04-R语言中的列表
概念 在R语言中,列表(List)是一种复杂的数据结构,用于存储不同类型的元素,包括向量、矩阵、数据框、函数等。列表是一种非常灵活的数据结构,可以将不同类型的数据组合在一起,类似于Python中的字…...
[Linux]进程概念
[Linux]进程概念 文章目录 [Linux]进程概念进程的定义进程和程序的关系Linux下查看进程Linux下通过系统调用获取进程标示符Linux下通过系统调用创建进程-fork函数使用 进程的定义 进程是程序的一个执行实例,是担当分配系统资源(CPU时间,内存…...
GEE/PIE遥感大数据处理与应用
随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提…...
● 647. 回文子串 ● 516.最长回文子序列
647. 回文子串 class Solution { public:int countSubstrings(string s) {vector<vector<bool>>dp(s.size(),vector<bool>(s.size(),false));int res0;for(int is.size()-1;i>0;i--){for(int ji;j<s.size();j){if(s[i]s[j]){if(j-i<1){res;dp[i][…...
Mysql group by使用示例
文章目录 1. groupby时不能查询*2. 查询出的列必须在group by的条件列中3. group by多个字段,这些字段都有索引也会索引失效,只有group by单个字段索引才能起作用4. having条件必须跟group by相关联5. 用group by做去重6. 使用聚合函数做数量统计7. havi…...
淘宝商品详情采集接口item_get-获得淘宝商品详情(可高并发线程)
获得淘宝商品详情页面数据采集如下: taobao.item_get 公共参数 名称类型必须描述keyString是调用key(必须以GET方式拼接在URL中)注册key账号接入secretString是调用密钥api_nameString是API接口名称(包括在请求地址中࿰…...
uniapp写公众号h5开发 附件上传 下载功能
一。 uni-app实现文件上传功能 目前,找到一款第三方插件 文件上传插件地址 https://ext.dcloud.net.cn/plugin?id=1015 将插件下载并导入项目中直接拿来使用,插件市场也有对改插件用法的描述。 用法: 1. 以下代码写于根目录下第一个view顶部或跟在自定义导航栏后面 // 以…...
机器学习基础09-审查分类算法(基于印第安糖尿病Pima Indians数据集)
算法审查是选择合适的机器学习算法的主要方法之一。审查算法前并 不知道哪个算法对问题最有效,必须设计一定的实验进行验证,以找到对问题最有效的算法。本章将学习通过 scikit-learn来审查六种机器学习的分类算法,通过比较算法评估矩阵的结果…...
C++ sort与优先队列排序的区别
int main() {vector<int> data{3, 1, 2};cout << "从小到大排序" << endl;sort(data.begin(), data.end(), std::less<int>());printContainer(data);auto cmp1 [](int x, int y) { return x < y; };sort(data.begin(), data.end(), cmp…...
【Rust】Rust学习 第十九章高级特征
现在我们已经学习了 Rust 编程语言中最常用的部分。在第二十章开始另一个新项目之前,让我们聊聊一些总有一天你会遇上的部分内容。你可以将本章作为不经意间遇到未知的内容时的参考。本章将要学习的功能在一些非常特定的场景下很有用处。虽然很少会碰到它们…...
C++ 纯虚函数和虚函数的区别
在 C 中,虚函数(Virtual Function)和纯虚函数(Pure Virtual Function)都是用于实现多态性的机制,但它们之间有一些关键的不同。 虚函数(Virtual Function) 定义:在基类…...
Go中的有限状态机FSM的详细介绍 _
1、FSM简介 1.1 有限状态机的定义 有限状态机(Finite State Machine,FSM)是一种数学模型,用于描述系统在不同状态下的行为和转移条件。 状态机有三个组成部分:状态(State)、事件(…...
Python入门教程 | Python3 基本数据类型
赋值 Python 中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。 在 Python 中,变量就是变量,它没有类型,我们所说的"类型"是变量所指的内存中对象的类型。 等号(ÿ…...
STM32移植u8g2玩转oled 用软件iic实现驱动oled
移植u8g2到stm int fputc(int ch,FILE *f) {ITM_SendChar(ch);return (ch); }void delay_us(uint32_t time) {uint32_t i8*time;while(i--); }uint8_t STM32_gpio_and_delay(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {//printf("%s:msg %d,arg_int …...
C++ 学习系列 -- string 实现
string是C标准库的重要部分,主要用于字符串处理。这里我们自己实现一个简单版本的 string. 一 思路 string 类中应该包含如下: 1. 类成员变量:char* m_data,利用 char* 指针存放字符串 2. 成员函数: 2.1 size(…...
C语言小练习(三)
🌞 “也许你感觉自己与周遭格格不入,但正是那些你一人度过的时光,让你变得越来越有意思,等有天别人终于注意到你的时候,他们就会发现一个比他们想象中更酷的人。”-《生活大爆炸》 Day03 📝 一.选择题&…...
2023 js逆向爬虫 有道翻译 代码
前置条件:nodejs环境、安装 crypto 和 python3环境 js.js文件: const crypto require("crypto")function decode(resp_data) {g_o ydsecret://query/key/B*RGygVywfNBwpmBaZg*WT7SIOUP2T0C9WHMZN39j^DAdaZhAnxvGcCY6VYFwnHlg_n ydsecre…...
【物联网无线通信技术】NFC从理论到实践(FM17XX)
NFC,全称是Near Field Communication,即“近场通信”,也叫“近距离无线通信”。NFC诞生于2004年,是基于RFID非接触式射频识别技术演变而来,由当时的龙头企业NXP(原飞利浦半导体)、诺基亚以及索尼联合发起。NFC采用13.5…...
Python爬虫猿人学逆向系列——第六题
题目:采集全部5页的彩票数据,计算全部中奖的总金额(包含一、二、三等奖) 地址:https://match.yuanrenxue.cn/match/6 本题比较简单,只是容易踩坑。话不多说请看分析。 两个参数,一个m一个f&…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
前端工具库lodash与lodash-es区别详解
lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...
