Adapting Language Models to Compress Contexts
本文是LLM系列文章,针对《Adapting Language Models to Compress Contexts》的翻译。
使语言模型适应上下文压缩
- 摘要
- 1 引言
- 2 相关工作
- 3 方法
- 4 实验
- 5 上下文学习
- 6 压缩检索语料库实现高效推理
- 7 结论
- 不足
摘要
1 引言
2 相关工作
3 方法
4 实验
5 上下文学习
6 压缩检索语料库实现高效推理
7 结论
我们引入了一种训练策略,用于将预训练的LMs调整为自动压缩器,自动压缩器将上下文递归压缩为摘要向量。我们的实验表明,摘要向量保留了重要的上下文信息,用于改进语言建模、上下文演示中的编码以及评估文章与用户查询的相关性。这表明,我们的无监督训练策略可以带来多用途的应用。摘要矢量可以预先计算、缓存和重复使用。这承诺通过减小注意力窗口的大小来提高实际的效率。未来还有大量工作要做,将自动压缩器扩展到更大的模型,并提高摘要向量的质量,以进一步缩小差距,同时充分关注长期上下文。
不足
- 我们只将AutoCompressors应用于参数高达2.7B的OPT型号。未来的工作需要确定自动压缩器在大型模型中的表现,但随着摘要向量维度的增长,每个向量可以保留更多信息。我们还质疑,其他具有不同体系结构特征的预训练模型族,如未绑定的输入输出嵌入,是否更难适应自动压缩器。
- 我们的研究结果表明,摘要向量忽略了一些通过充分关注可以获得的有用信息。此外,模型并不总是从增加汇总向量的数量中受益。我们怀疑,用于有效学习摘要向量的训练信号可能会受到预训练模型的限制,该模型非常善于根据当前片段中的纯文本标记进行预测。未来的工作需要改进这种优化。
- 摘要积累仍然会随着分段数量的增加而导致二次复杂度,尽管其速率远低于完全注意力。未来的工作可能会探索更有效地组合许多摘要向量的方法。
相关文章:
Adapting Language Models to Compress Contexts
本文是LLM系列文章,针对《Adapting Language Models to Compress Contexts》的翻译。 使语言模型适应上下文压缩 摘要1 引言2 相关工作3 方法4 实验5 上下文学习6 压缩检索语料库实现高效推理7 结论不足 摘要 1 引言 2 相关工作 3 方法 4 实验 5 上下文学习 …...

Kubernetes(K8S)使用PV和PVC做存储安装mysql
Kubernetes使用PV和PVC做存储安装mysql 环境准备什么是PV和PVC环境准备配置nfs安装nfs配置nfs服务端 创建命名空间配置pv和pvcpv的yaml文件pvc的yaml文件 部署mysql创建mysql的root密码的secret创建mysql部署的yaml部署mysql链接mysql外部链接内部链接 环境准备 首先你需要一个…...
Ansible Playbook 常用变量
以下是 Ansible Playbook 常用变量 ansible_connection: 指定连接类型(如 ssh、winrm) ansible_user: 指定远程用户 ansible_ssh_pass: 指定远程用户密码 ansible_become: 指定是否切换为超级用户 ansible_become_user: 指定切换到的用户 ansible_b…...

0103水平分片-jdbc-shardingsphere-中间件
文章目录 1 准备服务器1.1 创建server-order0容器1.2 创建server-order1容器 2、基本水平分片2.1、基本配置2.2、数据源配置2.3、标椎分片表配置2.4、行表达式2.5、分片算法配置2.6、分布式序列算法 3、多表关联3.1、创建关联表3.2、创建实体类3.3、创建Mapper3.4、配置关联表3…...

Vue2.0+webpack 引入字体文件(eot,ttf,woff)
webpack.base.config.js 需要配置 {test:/\/(woff2?|eot|ttf|otf)(\?.*)?$/,loader: url-loader,options: {limit: 10000,name: utils.assetsPath(fonts/[name].[hash:7].[ext])}} 如果 Vue2.0webpack3.6引入字体文件(eot,ttf,woff&…...
WPF入门到精通:3.MVVM简单应用及全局异常处理
MVVM简介 在WPF应用程序开发中,MVVM(Model-View-ViewModel)是一种非常流行的架构模式。它为应用程序的设计提供了良好的分层结构和可扩展性。 结构分为下列三部分 Model:定义了应用程序的数据模型 就是系统中的对象,…...

Springboot+mybatis-plus+dynamic-datasource+Druid 多数据源 分布式事务
Springbootmybatis-plusdynamic-datasourceDruid 多数据源事务,分布式事务 文章目录 Springbootmybatis-plusdynamic-datasourceDruid 多数据源事务,分布式事务0.前言1. 基础介绍ConnectionFactoryAbstractRoutingDataSource 动态路由数据源的抽象类 Dyn…...

673. 最长递增子序列的个数
673. 最长递增子序列的个数 原题链接:完成情况:解题思路:方法一:动态规划方法二:贪心 前缀和 二分查找 参考代码:__673最长递增子序列的个数__动态规划__673最长递增子序列的个数__贪心_前缀和_二分查找…...

Android12之ABuffer数据处理(三十四)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…...

whisper 语音识别项目部署
1.安装anaconda软件 在如下网盘免费获取软件: 链接:https://pan.baidu.com/s/1zOZCQOeiDhx6ebHh5zNasA 提取码:hfnd 2.使用conda命令创建python3.8环境 conda create -n whisper python3.83.进入whisper虚拟环境 conda activate whisper4.…...

实例044 在关闭窗口前加入确认对话框
实例说明 用户对程序进行操作时,难免会有错误操作的情况,例如不小心关闭程序,如果尚有许多资料没有保存,那么损失将非常严重,所以最好使程序具有灵活的交互性。人机交互过程一般都是通过对话框来实现的,对话…...

子查询和事务隔离以及用户管理
一、子查询 子查询是另一个语句中的select语句嵌套在另一个select中。注意子查询语法上必须使用()包起来。 嵌套的那个语句返回的结果有可能是: 一个字段,一行记录,一个列或一个表。嵌套的位置 where / having语句里面作为条件使用在from语…...
uniapp 滚动到指定元素的位置(锚点)
需求:在页面中,不管位于何处,点击按钮页面滚动到对应的标题位置。 最简单有效的方式(直接复制改数据就行) 使用 scroll-view 标签的属性:scroll-top(距离值 num) 或 scroll-into-view(子元素的id,不能以…...
Spring AOP 的 afterReturing 返回值是否能修改问题
文章目录 结论举例子原因外传 结论 最近要搞脱敏信息,所以,想了几种方案,最后使用全局的接口拦截,但是,又不能用注解的方式,毕竟是几年的老产品,有很多限制。 中间尝试过使用Spring AOP 的 aft…...

MyBatis分页插件PageHelper的使用及特殊字符的处理
目录 一、PageHelper简介 1.什么是分页 2.PageHelper是什么 3.使用PageHelper的优点 二、PageHelper插件的使用 原生limit查询 1. 导入pom依赖 2. Mybatis.cfg.xml 配置拦截器 3. 使用PageHelper进行分页 三、特殊字符的处理 1.SQL注入: 2.XML转义&#…...

[语音识别] 基于Python构建简易的音频录制与语音识别应用
语音识别技术的快速发展为实现更多智能化应用提供了无限可能。本文旨在介绍一个基于Python实现的简易音频录制与语音识别应用。文章简要介绍相关技术的应用,重点放在音频录制方面,而语音识别则关注于调用相关的语音识别库。本文将首先概述一些音频基础概…...

Matlab彩色图像转索引图像
索引图像 索引图像是一种把像素值直接作为RGB调色板下标的图像。索引图像包括一个数据矩阵X,一个调色板矩阵map,也称为颜色映像矩阵。其中,数据矩阵X可以是8位无符号整型、16位无符号整型或双精度类型。调色板矩阵map是一个m3的数据阵列&…...

测试框架pytest教程(11)-pytestAPI
常量 pytest.__version__ #输出pytest版本 pytest.version_tuple #输出版本的元组形式 功能 pytest.approx pytest.approx 是一个用于进行数值近似比较的 pytest 断言工具。 在测试中,有时候需要对浮点数或其他具有小数部分的数值进行比较。然而,由于…...

Docker自学:利用FastAPI建立一个简单的web app
环境配置:下载Docker Desktop 文件一:main.py from typing import Unionfrom fastapi import FastAPIimport uvicornapp FastAPI()app.get("/") def read_root():return {"Hello": "World"}app.get("/items/{item…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...