当前位置: 首页 > news >正文

To_Heart—题解——P6234 [eJOI2019] T形覆盖

link.

突然很想写这篇题解。虽然题目不算难。

考场只有30分是为什么呢?看来是我没有完全理解这道题目吧!

首先很明显的转换是,把 T 型覆盖看成十字形,再考虑最后减去某一块的贡献。

然后然后直接往原图上面放十字形!对于每一个十字的中心来说,实际上它只需要三个相邻的方块就可以了。而我们发现两个十字重合的部分不会超过两个方块,也就是说把这两个方块任意分配给两个人,就能保证这两个每个人都只会舍弃一个方块。

因为每次两个十字的重合最多只能让每个点丢弃一个方块,并且每次重合至少有一个十字会丢弃掉一个方块,所以惊天的结论是我们可以直接计算整个十字连通块的中心点和非中心点的个数。如果非中心点的个数大于等于中心点的个数的三倍,那么当前连通块一定合法,否则不能保证每个十字的中心点都能分配到刚好三个非中心点,即无解。

但是可能有非中心点的个数大于中心点的个数的三倍。这种情况说明所有的十字都只重合了一个点,那么必须要丢掉一个非中心点。因为要权值最大所以丢掉最小权值的就好了。

其实这个的实现方式有很多,但是我使用了并查集。为什么呢?因为其他题解就是用的并查集啊!

然后并查集需要注意的点就是不能选择中心点啊。中心点的权值设为最大值好不好。

#include<bits/stdc++.h>
using namespace std;int n,m,k;
int a[1000005];
int ID(int x,int y){return (x-1)*m+y;
}
int pre[1000005],dp[1000005];
int sz[1000005][2];
long long sum[1000005];bool vis[1000005];struct zz{int x,y;
}t[1000005];int Find(int x){if(pre[x]!=x) pre[x]=Find(pre[x]);return pre[x];
}
void Join(int x,int y){int fx=Find(x),fy=Find(y);if(fx==fy) return ;pre[fy]=fx,sum[fx]+=sum[fy],dp[fx]=min(dp[fx],dp[fy]),sz[fx][0]+=sz[fy][0],sz[fx][1]+=sz[fy][1];
}int fx[5]={0,1,-1,0,0};
int fy[5]={0,0,0,1,-1};int main(){
//	freopen("t-covering.in","r",stdin);
//	freopen("t-covering.out","w",stdout);cin>>n>>m;for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[ID(i,j)]);cin>>k;for(int i=1,x,y;i<=k;i++) scanf("%d%d",&x,&y),t[i]=(zz){x+1,y+1};for(int i=1;i<=k;i++) vis[ID(t[i].x,t[i].y)]=1;for(int i=1;i<=n*m;i++){pre[i]=i,sum[i]=a[i],dp[i]=a[i],sz[i][vis[i]]=1;if(vis[i]) dp[i]=0x3f3f3f3f; }for(int i=1;i<=k;i++) for(int j=1;j<=4;j++){int x=t[i].x,y=t[i].y;int dx=x+fx[j],dy=y+fy[j];if(dx<=0||dx>n||dy<=0||dy>m) continue;Join(ID(x,y),ID(dx,dy)); }long long ans=0;memset(vis,0,sizeof vis);for(int i=1;i<=n;i++) for(int j=1;j<=m;j++){int x=(ID(i,j));int fx=Find(x);if(vis[fx]) continue; vis[fx]=1;if(sz[fx][0]<sz[fx][1]*3) return printf("No\n"),0;else if(sz[fx][0]==sz[fx][1]*3) ans+=sum[fx];else ans+=sum[fx]-dp[fx];}cout<<ans<<endl;return 0;
}

相关文章:

To_Heart—题解——P6234 [eJOI2019] T形覆盖

link. 突然很想写这篇题解。虽然题目不算难。 考场只有30分是为什么呢&#xff1f;看来是我没有完全理解这道题目吧&#xff01; 首先很明显的转换是&#xff0c;把 T 型覆盖看成十字形&#xff0c;再考虑最后减去某一块的贡献。 然后然后直接往原图上面放十字形!对于每一个…...

[软件工具]精灵标注助手目标检测数据集格式转VOC或者yolo

有时候我们拿到一个数据集发现是xml文件格式如下&#xff1a; <?xml version"1.0" ?> <doc><path>C:\Users\Administrator\Desktop\test\000000000074.jpg</path><outputs><object><item><name>dog</name>…...

Spring BeanName自动生成原理

先看代码演示 项目先定义一个User类 public class User {private String name;Overridepublic String toString() {return "User{" "name" name \ };}public String getName() {return name;}public void setName(String name) {this.name name;} }…...

论文阅读_图形图像_U-NET

name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation name_ch: U-Net&#xff1a;用于生物医学图像分割的卷积网络 addr: http://link.springer.com/10.1007/978-3-319-24574-4_28 doi: 10.1007/978-3-319-24574-4_28 date_read: 2023-02-08 date_publi…...

基于热交换算法优化的BP神经网络(预测应用) - 附代码

基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果&#xff1a;5.Matlab代…...

基于秃鹰算法优化的BP神经网络(预测应用) - 附代码

基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于秃鹰算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.秃鹰优化BP神经网络2.1 BP神经网络参数设置2.2 秃鹰算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…...

2.文章复现《热电联产系统在区域综合能源系统中的定容选址研究》(附matlab程序)

0.代码链接 1.简述 光热发电是大规模利用太阳能的新兴方式&#xff0c;其储热系 统能够调节光热电站的出力特性&#xff0c;进而缓解光热电站并网带来的火电机组调峰问题。合理配置光热电站储热容量&#xff0c;能够 有效降低火电机组调峰成本。该文提出一种光热电站储热容 量配…...

如何开启esxi主机的ssh远程连接

环境&#xff1a;esxi主机&#xff0c;说明&#xff1a;esxi主机默认ssh是不开启的&#xff0c;需要人工手动启动&#xff0c;也可以设置同esxi主机一起开机启动。 1、找到esxi主机&#xff0c;点击“配置”那里&#xff0c;再点击右边的属性&#xff0c;如图所示&#xff1a; …...

Android Studio实现解析HTML获取json,解析json图片URL,将URL存到list,进行瀑布流展示

目录 效果build.gradle&#xff08;app&#xff09;添加的依赖&#xff08;用不上的可以不加&#xff09;AndroidManifest.xml错误activity_main.xmlitem_image.xmlMainActivityImage适配器ImageModel 接收图片URL 效果 build.gradle&#xff08;app&#xff09;添加的依赖&…...

Centos7 交叉编译QT5.9.9源码 AArch64架构

环境准备 centos7 镜像 下载地址&#xff1a;http://mirrors.aliyun.com/centos/7.9.2009/isos/x86_64/ aarch64交叉编译链 下载地址&#xff1a;https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/ QT5.9.9源代码 下载地址&#xff1…...

爬虫逆向实战(二十)--某99网站登录

一、数据接口分析 主页地址&#xff1a;某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无…...

【C# 基础精讲】LINQ to Objects查询

LINQ to Objects是LINQ技术在C#中的一种应用&#xff0c;它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects&#xff0c;您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…...

【力扣】209. 长度最小的子数组 <滑动窗口>

【力扣】209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其和 ≥ target 的长度最小的连续子数组 [numsl, numsl1, …, numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&a…...

帮助中心应该用什么工具做?

在线帮助中心是指一个位于互联网上的资源平台&#xff0c;提供给用户获取产品或服务相关信息、解决问题以及获取技术支持的渠道。它通常包含了组织化的知识库、常见问题解答&#xff08;FAQ&#xff09;、操作指南、教程视频、用户手册等内容。在线帮助中心的主要目标是为用户提…...

前端面试:【跨域与安全】跨域问题及解决方案

嗨&#xff0c;亲爱的Web开发者&#xff01;在构建现代Web应用时&#xff0c;跨域问题和安全性一直是不可忽视的挑战之一。本文将深入探讨跨域问题的背景以及解决方案&#xff0c;以确保你的应用既安全又能与其他域名的资源进行互操作。 1. 什么是跨域问题&#xff1f; 跨域问…...

【SQL中DDL DML DQL DCL所包含的命令】

SQL中DDL DML DQL DCL所包含的命令 关于DDL、DML、DQL、DCL的定义和适用范围如下&#xff1a; 数据定义语言&#xff08;Data Definition Language&#xff0c;DDL&#xff09;&#xff1a; DDL用于创建、修改和删除数据库中的表、视图、索引等对象。它的主要命令包括CREATE、A…...

LeetCode150道面试经典题-- 二叉树的最大深度(简单)

1.题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.示例 3.思路 深度优先遍历 一个二叉树要查询到最大深度&#xff0c;可以将问题转为从根节点出发&#xff0c;查看左右子树的最大深度&am…...

【C++11】future和async等

C11的future和async等关键字 1.async和future的概念 std::async 和 std::future 是 C11 引入的标准库功能&#xff0c;用于实现异步编程&#xff0c;使得在多线程环境中更容易处理并行任务。它们可以帮助你在不同线程中执行函数&#xff0c;并且能够方便地获取函数的结果。 在…...

Linux 系统下 GDB 调试器的使用

文章目录 简介GDB 的介绍GDB 的使用 GDB 常用命令及示例查看相关操作断点相关操作运行相关操作变量相关操作分隔窗口操作 简介 GDB 的介绍 GDB 是 GNU 调试程序&#xff0c;是用来调试 C 和 C 程序的调试器。它可以让程序开发者在程序运行时观察程序的内部结构和内存的使用情况…...

个人首次使用UniAPP使用注意事项以及踩坑

个人首次使用UniAPP 使用注意事项以及踩坑 自我记录 持续更新 1.vscode 插件 uni-create-view 快速nui-app页面的 uni-helper uni-app代码提示的 uniapp小程序扩展 鼠标悬停查文档 Error Lens 行内提示报错 "types": ["dcloudio/types", "mini…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学

一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件&#xff0c;其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时&#xff0c;价带电子受激发跃迁至导带&#xff0c;形成电子-空穴对&#xff0c;导致材料电导率显著提升。…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...