当前位置: 首页 > news >正文

CF 148 D Bag of mice(概率dp求概率)

CF 148 D. Bag of mice(概率dp求概率)

Problem - 148D - Codeforces

大意:袋子里有 w 只白鼠和 b 只黑鼠 ,A和B轮流从袋子里抓,谁先抓到白色谁就赢。A每次随机抓一只,B每次随机抓完一只之后会有另一只随机老鼠跑出来。如果两个人都没有抓到白色则B赢。A先抓,问A赢的概率。

思路:看到数据范围后考虑 概率dp , 设 dp[i][j] 为有 i 个白鼠 j 个黑鼠 A先手获胜的概率

考虑初始化

i == 0 全是黑鼠 , A 必败
dp[i][j] == 0
j == 0 全是白鼠 ,  A 必胜 
dp[i][j] == 1

分情况考虑转移

分四种情况:
1. A 取到白鼠                             dp[i][j] += i / (i + j)
2. A 取到黑鼠 , B取到白鼠                dp[i][j] += 0;
3. A 取到黑鼠 , B取到黑鼠 , 白鼠跑出来  dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2]
4. A 取到黑鼠 , B取到黑鼠 , 黑鼠跑出来  dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3]
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define int long long
const int N = 1e3 + 10;
const int mod = 1e9 + 7;
typedef pair<int,int>PII;double dp[N][N];
int x , y;inline double pro(int x , int y){return (double) x / (double) y;
}signed main(){IOScout << fixed << setprecision(10);cin >> x >> y;for(int i = 1 ; i <= x ; i ++) dp[i][0] = 1;for(int i = 1 ; i <= y ; i ++) dp[0][i] = 0;for(int i = 1 ; i <= x ; i ++){for(int j = 1 ; j <= y ; j ++){dp[i][j] += pro(i , i + j);if(i >= 1 && j >= 2) dp[i][j] += pro(j , i + j) * pro(j - 1 , i + j - 1) * pro(i , i + j - 2) * dp[i - 1][j - 2];if(j >= 3) dp[i][j] += pro(j , i + j) * pro(j - 1 , i + j - 1) * pro(j - 2 , i + j - 2) * dp[i][j - 3];}}cout << dp[x][y];return 0;
}
//freopen("文件名.in","r",stdin);
//freopen("文件名.out","w",stdout);

相关文章:

CF 148 D Bag of mice(概率dp求概率)

CF 148 D. Bag of mice(概率dp求概率) Problem - 148D - Codeforces 大意&#xff1a;袋子里有 w 只白鼠和 b 只黑鼠 &#xff0c;A和B轮流从袋子里抓&#xff0c;谁先抓到白色谁就赢。A每次随机抓一只&#xff0c;B每次随机抓完一只之后会有另一只随机老鼠跑出来。如果两个人…...

引入本地 jar 包教程

将本地 jar 包&#xff0c;放到 resource 目录下&#xff0c;在 pom.xml 文件中加入如下依赖&#xff1a; <dependency><groupId>com.hk</groupId><artifactId>examples</artifactId><version>1.0</version><scope>system<…...

优维产品最佳实践第5期:什么是持续集成?

谈到到DevOps&#xff0c;持续交付流水线是绕不开的一个话题&#xff0c;相对于其他实践&#xff0c;通过流水线来实现快速高质量的交付价值是相对能快速见效的&#xff0c;特别对于开发测试人员&#xff0c;能够获得实实在在的收益。 本期EasyOps产品使用最佳实践&#xff0c…...

空时自适应处理用于机载雷达——元素空间空时自适应处理(Matla代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

聚观早报 | 青瓷游戏上半年营收3.34亿元;如祺出行冲击IPO

【聚观365】8月26日消息 青瓷游戏上半年营收3.34亿元 如祺出行冲击IPO 索尼互动娱乐将收购Audeze 昆仑万维上半年净利润3.6亿元 T-Mobile计划在未来五周内裁员5000人 青瓷游戏上半年营收3.34亿元 青瓷游戏发布截至2023年6月30日止的中期业绩&#xff0c;财报显示&#xf…...

硅谷的魔法:如何塑造了全球技术的未来

硅谷的创新文化简介 硅谷&#xff0c;位于美国加利福尼亚州的圣克拉拉谷&#xff0c;已经从一个半导体产业的中心发展成为全球技术创新的代名词。这里集结了全球最顶尖的技术公司、创业者和投资者&#xff0c;共同创造了一个技术创新的奇迹。 起源与发展 硅谷的起源与斯坦福大…...

(三)行为模式:4、迭代器模式(Iterator Pattern)(C++示例)

目录 1、迭代器模式&#xff08;Iterator Pattern&#xff09;含义 2、迭代器模式的UML图学习 3、迭代器模式的应用场景 4、迭代器模式的优缺点 &#xff08;1&#xff09;优点 &#xff08;2&#xff09;缺点 5、C实现迭代器模式的实例 1、迭代器模式&#xff08;Itera…...

React Antd form.getFieldsValue() 和 form.getFieldsValue(true) 有区别吗?

背景 突然发现 antd 的 getFieldsValue()是可以传一个 true 参数的&#xff0c;如题,React Antd form.getFieldsValue() 和 form.getFieldsValue(true) 有区别吗&#xff1f; 验证 确实不一样 结论 getFieldsValue 提供了多种重载方法&#xff1a; getFieldsValue(name…...

浅谈Java中的观察者模式

观察者模式是软件开发中常用的一种设计模式&#xff0c;它通过定义一对多的依赖关系&#xff0c;使得一个对象&#xff08;主题&#xff09;的状态变化可以通知多个其他对象&#xff08;观察者&#xff09;。 这种模式的优点是解耦和增加扩展性&#xff0c;用于实现对象之间的…...

C++:命名空间,缺省参数,函数重载,引用,内联函数

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》 文章目录 前言一、命名空间命名空间的定义命名空间的使用 二、缺省参数缺省参数概念缺省参数分类 三、函数重载函数重载的概念 四、引用引用的概念引用特性引用的使用场景引用与指针的区别 …...

2.Vue报错Cannot read properties of undefined (reading ‘then‘)

1.出现报错 Cannot read properties of undefined (reading ‘then’)&#xff0c; 代码为 uploadFile(e.target.files[0]).then((res) > {alert(JSON.stringify(res));});2.原因 是因为uploadFile方法没有返回值&#xff0c;于是我又检查了一遍代码&#xff0c;发现我的r…...

【LeetCode 】数组简介

集合列表和数组 本文中介绍的概念为适用于所有编程语言的抽象理论&#xff0c;具体实现会由编程语言的不同而稍有差别。 具体介绍数组之前&#xff0c;我们先来了解一下集合、列表和数组的概念之间的差别。 集合 集合一般被定义为&#xff1a;由一个或多个确定的元素所构成的…...

一文解析block io生命历程

作为存储业务的一个重要组成部分&#xff0c;block IO是非易失存储的唯一路径&#xff0c;它的生命历程每个阶段都直接关乎我们手机的性能、功耗、甚至寿命。本文试图通过block IO的产生、调度、下发、返回的4个阶段&#xff0c;阐述一个block IO的生命历程。 一、什么是块设备…...

Python爬虫学习之旅:从入门到精通,要学多久?

导语&#xff1a; 随着信息时代的发展&#xff0c;大量的数据和信息储存在互联网上&#xff0c;这为我们提供了获取和利用这些数据的机会。而Python爬虫作为一种强大的工具&#xff0c;可以帮助我们从网页中提取数据&#xff0c;并进行进一步的分析和挖掘。然而&#xff0c;对…...

HarmonyOS/OpenHarmony(Stage模型)卡片开发应用上下文Context使用场景一

1.获取应用文件路径 基类Context提供了获取应用文件路径的能力&#xff0c;ApplicationContext、AbilityStageContext、UIAbilityContext和ExtensionContext均继承该能力。应用文件路径属于应用沙箱路径。上述各类Context获取的应用文件路径有所不同。 通过ApplicationContext…...

MAE 论文精读 | 在CV领域自监督的Bert思想

1. 背景 之前我们了解了VIT和transformer MAE 是基于VIT的&#xff0c;不过像BERT探索了自监督学习在NLP领域的transformer架构的应用&#xff0c;MAE探索了自监督学习在CV的transformer的应用 论文标题中的Auto就是说标号来自于图片本身&#xff0c;暗示了这种无监督的学习 …...

C++中内存的分配

一个由C/C编译的程序占用的内存分为以下几个部分 1、栈区&#xff08;stack&#xff09;— 由编译器自动分配释放 &#xff0c;存放函数的参数值&#xff0c;局部变量的值等。 2、堆区&#xff08;heap&#xff09; — 一般由程序员分配释放&#xff0c; 若程序…...

Qt中的垂直布局QVBoxLayout和水平布局QHBoxLayout

文章目录 QVBoxLayoutQHBoxLayout QVBoxLayout Qt中的垂直布局&#xff08;Vertical Layout&#xff09;是用来将控件按垂直方向进行排列的布局管理器。下面是一些常用的Qt Vertical Layout的函数及其用法示例&#xff1a; QVBoxLayout类的构造函数&#xff1a; QVBoxLayout…...

【C#学习笔记】委托和事件

文章目录 委托委托的定义委托实例化委托的调用多播委托 为什么使用委托&#xff1f;官方委托泛型方法和泛型委托 事件为什么要有事件&#xff1f;事件和委托的区别&#xff1a; 题外话——委托与观察者模式 委托 在 .NET 中委托提供后期绑定机制。 后期绑定意味着调用方在你所…...

堆排序简介

概念&#xff1a; 堆排序是一种基于二叉堆数据结构的排序算法。它的概念是通过将待排序的元素构建成一个二叉堆&#xff0c;然后通过不断地取出堆顶元素并重新调整堆的结构来实现排序。 算法步骤&#xff1a; 构建最大堆&#xff08;或最小堆&#xff09;&#xff1a;将待排…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...