当前位置: 首页 > news >正文

5分钟理解NPL算法 之 马尔可夫链 Markov Chain

马尔可夫链(Markov Chain)

马尔可夫链是一种简单的推理模型。用于描述受当前事件影响下的下一事件发生概率。在预测学科中广泛应用。例如股票预测、文字推理、路线推荐等。

他的核心思路是:假设事件顺序为: X 1 , X 2 , X 3 , . . . . . X_1, X_2, X_3, ..... X1,X2,X3,.....
那么马尔可夫链认为, X 2 的值只与 X 1 的值有关,同样, X 3 的值也只与 X 2 的值有关 X_2的值只与X_1的值有关,同样,X_3的值也只与X_2的值有关 X2的值只与X1的值有关,同样,X3的值也只与X2的值有关

举个栗子

假设你正在策划旅游路线,当然是希望旅游地点之间是相近的且有序的,所以你的第一站目的地会理所应当的会直接影响第二站的选择。以北京和深圳为例:

0.3
0.7
0.2
0.5
北京
深圳

以矩阵方式描述就显得更直观些:
下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 下一站概率= P=\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 下一站概率=P= 北京深圳北京0.20.7深圳0.30.5
如上所示,如果你现在身在北京,下一站为深圳的概率是0.3,继续停留在北京的概率是0.2,
如果当前身在深圳,下一站去北京的概率是0.7,继续停留在深圳的概率是0.5

那如果我想知道,已经在两地辗转移动两次后的下一站概率怎么办呢?
只需要将前后的关系矩阵相乘:

移动 2 次后的下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 移动2次后的下一站概率 = P= \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2& 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 移动2次后的下一站概率=P= 北京深圳北京0.20.7深圳0.30.5 北京深圳北京0.20.7深圳0.30.5

= [ 北京 深圳 北京 0.2 ∗ 0.2 + 0.3 ∗ 0.7 0.2 ∗ 0.3 + 0.3 ∗ 0.5 深圳 0.7 ∗ 0.2 + 0.5 ∗ 0.7 0.7 ∗ 0.3 + 0.5 ∗ 0.5 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 * 0.2 + 0.3 *0.7 & 0.2* 0.3+0.3*0.5 \\ 深圳 & 0.7 * 0.2 + 0.5*0.7 & 0.7*0.3 + 0.5*0.5 \\ \end{matrix} \right] = 北京深圳北京0.20.2+0.30.70.70.2+0.50.7深圳0.20.3+0.30.50.70.3+0.50.5
= [ 北京 深圳 北京 0.25 0.21 深圳 0.49 0.46 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 &0.25 & 0.21\\ 深圳 & 0.49 & 0.46\\ \end{matrix} \right] = 北京深圳北京0.250.49深圳0.210.46
结论:在两地移动2次后,如果当前在北京,继续留在北京的概率是0.25,去深圳的概率是0.21.
如果当前在深圳,继续留在深圳的概率是0.46,去北京的概率是0.49

结论

由此可以推断马尔可夫链的三个主要特征是:

  1. 状态空间:选择范围是有限集
  2. 无记忆性:预测仅与上一状态相关联
  3. 转移矩阵:通过矩阵相乘可计算出概率

相关文章:

5分钟理解NPL算法 之 马尔可夫链 Markov Chain

马尔可夫链(Markov Chain) 马尔可夫链是一种简单的推理模型。用于描述受当前事件影响下的下一事件发生概率。在预测学科中广泛应用。例如股票预测、文字推理、路线推荐等。 他的核心思路是:假设事件顺序为: X 1 , X 2 , X 3 , . . . . . X…...

C#_GDI+ 绘图编程入门

官网提供相关API GDI 基本图形功能_drawing 高级二维和矢量图形功能_drawing2D GDI 图像处理功能_Imaging GDI 排版功能_text Windows 窗体应用程序提供打印功能_Printing 像素 构成图像的最小单位就是像素;屏幕上显示不管是位图或者矢量图,当描述…...

自己写一个svg转化为安卓xml的工具类

自己写一个svg转化为安卓xml的工具类_张风捷特烈的博客-CSDN博客 svg资源阿里巴巴矢量资源网站:iconfont-阿里巴巴矢量图标库 感觉一般的svg到Android可用的xml差异有点规律,主要的就是path 秉承着能用代码解决的问题,绝对不动手。能够靠智商解决的问题…...

基于随机森林的机器启动识别,基于随机森林的智能家居电器启动识别

目录 背影 摘要 随机森林的基本定义 随机森林实现的步骤 基于随机森林的机器启动识别 代码下载链接: 基于随机森林的家用电器启动识别,基于RF的电器启动识别,基于随机森林的智能家居启动检测-深度学习文档类资源-CSDN文库 https://download.csdn.net/download/abc991835105/…...

Apache Doris 极简运维之BE扩缩容(1)

Apache Doris 极简运维之BE扩缩容(1) 一、环境信息硬件信息软件信息 二、缩容2.1 DROP BACKEND缩容2.2 DECOMMISSION BACKEND缩容2.2.1 缩容前2.2.2 缩容中2.2.3 缩容后 三、扩容3.1 扩容前3.2 扩容中3.3 扩容后 四、总结 一、环境信息 已部署三个BE节点…...

MySQL每日一练--校园教务系统

一丶数据库名称:SchoolDB 二丶数据库表信息:角色信息表 表名: t_role 主键: r_id 序号 字段名称 字段说明 类别 位数 属性 备注 1 r_id 角色编号 int 主键 自动增长 2 r_name_EN 角色名(英…...

9.阿里Sentinel哨兵

1.Sentinel Sentinel(哨兵)是由阿里开源的一款流量控制和熔断降级框架,用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分,用于保护服务不被异常流量冲垮,从而提高系统的稳定…...

设计模式之工厂方法模式

目录 工厂方法模式 简介 优缺点 结构 使用场景 实现 1.抽象产品 2.具体产品 3.抽象工厂 4.具体工厂 5.调用 总结 抽象工厂模式 简介 结构 实现 区别 工厂方法模式 简介 提供一个用于创建对象的接口(工厂接口),让其实现类(工厂实现类)决定实例化哪…...

【案例教程】基于R语言的物种气候生态位动态量化与分布特征模拟

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预…...

Moonbeam生态跨链互操作项目汇总

立秋已过,今年的夏天已经接近尾声,即将迎来凉爽的秋天。Moonbeam生态一同以往持续成长,在8月也举办了不少活动、完成集成合作以及协议更新。让我们一同快速了解Moonbeam生态项目近期发生的大小事件吧! Moonwell Moonwell是一个建…...

基于社会群体算法优化的BP神经网络(预测应用) - 附代码

基于社会群体算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于社会群体算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.社会群体优化BP神经网络2.1 BP神经网络参数设置2.2 社会群体算法应用 4.测试结果:5…...

208. 实现 Trie (前缀树)

题目描述 Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。 请你实现 Trie 类: Trie() 初始化前缀树对…...

adb使用总结

adb连接到模拟器 adb devices 打开模拟器,找到设置。 多次点击版本号,切换到开发者模式 搜索进入开发者选项 开启USB调试 此时在终端输入adb devices就连接上了 使用adb查看安卓手机架构 adb shell getprop ro.product.cpu.abi 进入安卓手机的shell …...

go:正确引入自己编写的包(如何在 Go 中正确引入自己编写的包)

前言 目录如下: 具体教程 1. 工作空间(我的是根目录)新建 go.work 文件 文件内容如下: go 1.21.0use (./tuchuang./tuchuang/testm ) 2. 添加go.mod文件 1. 包文件夹下 进入testm目录执行 go mod init testModule 2. 引用目…...

cortex-A7核PWM实验--STM32MP157

实验目的:驱动风扇,蜂鸣器,马达进行工作 目录 一,PWM相关概念 有源蜂鸣器和无源蜂鸣器 二,分析电路图,框图 三,分析RCC章节 1,确定总线连接 2,根据总线内容确定基…...

电工-学习电工有哪些好处

学习电工有哪些好处?在哪学习电工? 学习电工有哪些好处?在哪学习电工?学习电工可以做什么?优势有哪些? 学习电工可以做什么?学习电工有哪些好处? 就业去向:可在企业单位…...

Redis内存空间预估与内存优化策略:保障数据安全与性能的架构实践AIGC/AI绘画/chatGPT/SD/MJ

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...

Pandas数据分析教程-数据处理

pandas-02-数据清洗&预处理 B. 数据处理1. 重复值处理2. map逐元素转换3. 值替换4. 改变索引值5. 离散化与分箱6. 检测过滤异常值7. 排列与随机采样8. 根据类别生成one-hot向量,向量化文中用S代指Series,用Df代指DataFrame 数据清洗是处理大型复杂情况数据必不可少的步骤…...

php 多维数组排序,根据某一列排序(array_multisort()和array_column()联用)

array_multisort()和array_column()联用效果直接叠满,11>100 先来看下两个函数的介绍和用法 array_column(): 一般模式,不需要其中字段作为id,只需要提取val值 <?php // 可能从数据库中返回数组 $a [[id > 5698, first_name > Peter, last_name > G…...

框架分析(5)-Django

框架分析&#xff08;5&#xff09;-Django 专栏介绍Django核心概念以及组件讲解模型&#xff08;Model&#xff09;视图&#xff08;View&#xff09;模板&#xff08;Template&#xff09;路由&#xff08;URLconf&#xff09;表单&#xff08;Form&#xff09;后台管理&…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...