当前位置: 首页 > news >正文

5分钟理解NPL算法 之 马尔可夫链 Markov Chain

马尔可夫链(Markov Chain)

马尔可夫链是一种简单的推理模型。用于描述受当前事件影响下的下一事件发生概率。在预测学科中广泛应用。例如股票预测、文字推理、路线推荐等。

他的核心思路是:假设事件顺序为: X 1 , X 2 , X 3 , . . . . . X_1, X_2, X_3, ..... X1,X2,X3,.....
那么马尔可夫链认为, X 2 的值只与 X 1 的值有关,同样, X 3 的值也只与 X 2 的值有关 X_2的值只与X_1的值有关,同样,X_3的值也只与X_2的值有关 X2的值只与X1的值有关,同样,X3的值也只与X2的值有关

举个栗子

假设你正在策划旅游路线,当然是希望旅游地点之间是相近的且有序的,所以你的第一站目的地会理所应当的会直接影响第二站的选择。以北京和深圳为例:

0.3
0.7
0.2
0.5
北京
深圳

以矩阵方式描述就显得更直观些:
下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 下一站概率= P=\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 下一站概率=P= 北京深圳北京0.20.7深圳0.30.5
如上所示,如果你现在身在北京,下一站为深圳的概率是0.3,继续停留在北京的概率是0.2,
如果当前身在深圳,下一站去北京的概率是0.7,继续停留在深圳的概率是0.5

那如果我想知道,已经在两地辗转移动两次后的下一站概率怎么办呢?
只需要将前后的关系矩阵相乘:

移动 2 次后的下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 移动2次后的下一站概率 = P= \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2& 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 移动2次后的下一站概率=P= 北京深圳北京0.20.7深圳0.30.5 北京深圳北京0.20.7深圳0.30.5

= [ 北京 深圳 北京 0.2 ∗ 0.2 + 0.3 ∗ 0.7 0.2 ∗ 0.3 + 0.3 ∗ 0.5 深圳 0.7 ∗ 0.2 + 0.5 ∗ 0.7 0.7 ∗ 0.3 + 0.5 ∗ 0.5 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 * 0.2 + 0.3 *0.7 & 0.2* 0.3+0.3*0.5 \\ 深圳 & 0.7 * 0.2 + 0.5*0.7 & 0.7*0.3 + 0.5*0.5 \\ \end{matrix} \right] = 北京深圳北京0.20.2+0.30.70.70.2+0.50.7深圳0.20.3+0.30.50.70.3+0.50.5
= [ 北京 深圳 北京 0.25 0.21 深圳 0.49 0.46 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 &0.25 & 0.21\\ 深圳 & 0.49 & 0.46\\ \end{matrix} \right] = 北京深圳北京0.250.49深圳0.210.46
结论:在两地移动2次后,如果当前在北京,继续留在北京的概率是0.25,去深圳的概率是0.21.
如果当前在深圳,继续留在深圳的概率是0.46,去北京的概率是0.49

结论

由此可以推断马尔可夫链的三个主要特征是:

  1. 状态空间:选择范围是有限集
  2. 无记忆性:预测仅与上一状态相关联
  3. 转移矩阵:通过矩阵相乘可计算出概率

相关文章:

5分钟理解NPL算法 之 马尔可夫链 Markov Chain

马尔可夫链(Markov Chain) 马尔可夫链是一种简单的推理模型。用于描述受当前事件影响下的下一事件发生概率。在预测学科中广泛应用。例如股票预测、文字推理、路线推荐等。 他的核心思路是:假设事件顺序为: X 1 , X 2 , X 3 , . . . . . X…...

C#_GDI+ 绘图编程入门

官网提供相关API GDI 基本图形功能_drawing 高级二维和矢量图形功能_drawing2D GDI 图像处理功能_Imaging GDI 排版功能_text Windows 窗体应用程序提供打印功能_Printing 像素 构成图像的最小单位就是像素;屏幕上显示不管是位图或者矢量图,当描述…...

自己写一个svg转化为安卓xml的工具类

自己写一个svg转化为安卓xml的工具类_张风捷特烈的博客-CSDN博客 svg资源阿里巴巴矢量资源网站:iconfont-阿里巴巴矢量图标库 感觉一般的svg到Android可用的xml差异有点规律,主要的就是path 秉承着能用代码解决的问题,绝对不动手。能够靠智商解决的问题…...

基于随机森林的机器启动识别,基于随机森林的智能家居电器启动识别

目录 背影 摘要 随机森林的基本定义 随机森林实现的步骤 基于随机森林的机器启动识别 代码下载链接: 基于随机森林的家用电器启动识别,基于RF的电器启动识别,基于随机森林的智能家居启动检测-深度学习文档类资源-CSDN文库 https://download.csdn.net/download/abc991835105/…...

Apache Doris 极简运维之BE扩缩容(1)

Apache Doris 极简运维之BE扩缩容(1) 一、环境信息硬件信息软件信息 二、缩容2.1 DROP BACKEND缩容2.2 DECOMMISSION BACKEND缩容2.2.1 缩容前2.2.2 缩容中2.2.3 缩容后 三、扩容3.1 扩容前3.2 扩容中3.3 扩容后 四、总结 一、环境信息 已部署三个BE节点…...

MySQL每日一练--校园教务系统

一丶数据库名称:SchoolDB 二丶数据库表信息:角色信息表 表名: t_role 主键: r_id 序号 字段名称 字段说明 类别 位数 属性 备注 1 r_id 角色编号 int 主键 自动增长 2 r_name_EN 角色名(英…...

9.阿里Sentinel哨兵

1.Sentinel Sentinel(哨兵)是由阿里开源的一款流量控制和熔断降级框架,用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分,用于保护服务不被异常流量冲垮,从而提高系统的稳定…...

设计模式之工厂方法模式

目录 工厂方法模式 简介 优缺点 结构 使用场景 实现 1.抽象产品 2.具体产品 3.抽象工厂 4.具体工厂 5.调用 总结 抽象工厂模式 简介 结构 实现 区别 工厂方法模式 简介 提供一个用于创建对象的接口(工厂接口),让其实现类(工厂实现类)决定实例化哪…...

【案例教程】基于R语言的物种气候生态位动态量化与分布特征模拟

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预…...

Moonbeam生态跨链互操作项目汇总

立秋已过,今年的夏天已经接近尾声,即将迎来凉爽的秋天。Moonbeam生态一同以往持续成长,在8月也举办了不少活动、完成集成合作以及协议更新。让我们一同快速了解Moonbeam生态项目近期发生的大小事件吧! Moonwell Moonwell是一个建…...

基于社会群体算法优化的BP神经网络(预测应用) - 附代码

基于社会群体算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于社会群体算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.社会群体优化BP神经网络2.1 BP神经网络参数设置2.2 社会群体算法应用 4.测试结果:5…...

208. 实现 Trie (前缀树)

题目描述 Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。 请你实现 Trie 类: Trie() 初始化前缀树对…...

adb使用总结

adb连接到模拟器 adb devices 打开模拟器,找到设置。 多次点击版本号,切换到开发者模式 搜索进入开发者选项 开启USB调试 此时在终端输入adb devices就连接上了 使用adb查看安卓手机架构 adb shell getprop ro.product.cpu.abi 进入安卓手机的shell …...

go:正确引入自己编写的包(如何在 Go 中正确引入自己编写的包)

前言 目录如下: 具体教程 1. 工作空间(我的是根目录)新建 go.work 文件 文件内容如下: go 1.21.0use (./tuchuang./tuchuang/testm ) 2. 添加go.mod文件 1. 包文件夹下 进入testm目录执行 go mod init testModule 2. 引用目…...

cortex-A7核PWM实验--STM32MP157

实验目的:驱动风扇,蜂鸣器,马达进行工作 目录 一,PWM相关概念 有源蜂鸣器和无源蜂鸣器 二,分析电路图,框图 三,分析RCC章节 1,确定总线连接 2,根据总线内容确定基…...

电工-学习电工有哪些好处

学习电工有哪些好处?在哪学习电工? 学习电工有哪些好处?在哪学习电工?学习电工可以做什么?优势有哪些? 学习电工可以做什么?学习电工有哪些好处? 就业去向:可在企业单位…...

Redis内存空间预估与内存优化策略:保障数据安全与性能的架构实践AIGC/AI绘画/chatGPT/SD/MJ

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...

Pandas数据分析教程-数据处理

pandas-02-数据清洗&预处理 B. 数据处理1. 重复值处理2. map逐元素转换3. 值替换4. 改变索引值5. 离散化与分箱6. 检测过滤异常值7. 排列与随机采样8. 根据类别生成one-hot向量,向量化文中用S代指Series,用Df代指DataFrame 数据清洗是处理大型复杂情况数据必不可少的步骤…...

php 多维数组排序,根据某一列排序(array_multisort()和array_column()联用)

array_multisort()和array_column()联用效果直接叠满,11>100 先来看下两个函数的介绍和用法 array_column(): 一般模式,不需要其中字段作为id,只需要提取val值 <?php // 可能从数据库中返回数组 $a [[id > 5698, first_name > Peter, last_name > G…...

框架分析(5)-Django

框架分析&#xff08;5&#xff09;-Django 专栏介绍Django核心概念以及组件讲解模型&#xff08;Model&#xff09;视图&#xff08;View&#xff09;模板&#xff08;Template&#xff09;路由&#xff08;URLconf&#xff09;表单&#xff08;Form&#xff09;后台管理&…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...