基于社会群体算法优化的BP神经网络(预测应用) - 附代码
基于社会群体算法优化的BP神经网络(预测应用) - 附代码
文章目录
- 基于社会群体算法优化的BP神经网络(预测应用) - 附代码
- 1.数据介绍
- 2.社会群体优化BP神经网络
- 2.1 BP神经网络参数设置
- 2.2 社会群体算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用社会群体算法优化BP神经网络并应用于预测。
1.数据介绍
本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据
2.社会群体优化BP神经网络
2.1 BP神经网络参数设置
神经网络参数如下:
%% 构造网络结构
%创建神经网络
inputnum = 2; %inputnum 输入层节点数 2维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 1; %outputnum 隐含层节点数
2.2 社会群体算法应用
社会群体算法原理请参考:https://blog.csdn.net/u011835903/article/details/119677682
社会群体算法的参数设置为:
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;
第二层权值数量为:1;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从社会群体算法的收敛曲线可以看到,整体误差是不断下降的,说明社会群体算法起到了优化的作用:





5.Matlab代码
相关文章:
基于社会群体算法优化的BP神经网络(预测应用) - 附代码
基于社会群体算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于社会群体算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.社会群体优化BP神经网络2.1 BP神经网络参数设置2.2 社会群体算法应用 4.测试结果:5…...
208. 实现 Trie (前缀树)
题目描述 Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。 请你实现 Trie 类: Trie() 初始化前缀树对…...
adb使用总结
adb连接到模拟器 adb devices 打开模拟器,找到设置。 多次点击版本号,切换到开发者模式 搜索进入开发者选项 开启USB调试 此时在终端输入adb devices就连接上了 使用adb查看安卓手机架构 adb shell getprop ro.product.cpu.abi 进入安卓手机的shell …...
go:正确引入自己编写的包(如何在 Go 中正确引入自己编写的包)
前言 目录如下: 具体教程 1. 工作空间(我的是根目录)新建 go.work 文件 文件内容如下: go 1.21.0use (./tuchuang./tuchuang/testm ) 2. 添加go.mod文件 1. 包文件夹下 进入testm目录执行 go mod init testModule 2. 引用目…...
cortex-A7核PWM实验--STM32MP157
实验目的:驱动风扇,蜂鸣器,马达进行工作 目录 一,PWM相关概念 有源蜂鸣器和无源蜂鸣器 二,分析电路图,框图 三,分析RCC章节 1,确定总线连接 2,根据总线内容确定基…...
电工-学习电工有哪些好处
学习电工有哪些好处?在哪学习电工? 学习电工有哪些好处?在哪学习电工?学习电工可以做什么?优势有哪些? 学习电工可以做什么?学习电工有哪些好处? 就业去向:可在企业单位…...
Redis内存空间预估与内存优化策略:保障数据安全与性能的架构实践AIGC/AI绘画/chatGPT/SD/MJ
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...
Pandas数据分析教程-数据处理
pandas-02-数据清洗&预处理 B. 数据处理1. 重复值处理2. map逐元素转换3. 值替换4. 改变索引值5. 离散化与分箱6. 检测过滤异常值7. 排列与随机采样8. 根据类别生成one-hot向量,向量化文中用S代指Series,用Df代指DataFrame 数据清洗是处理大型复杂情况数据必不可少的步骤…...
php 多维数组排序,根据某一列排序(array_multisort()和array_column()联用)
array_multisort()和array_column()联用效果直接叠满,11>100 先来看下两个函数的介绍和用法 array_column(): 一般模式,不需要其中字段作为id,只需要提取val值 <?php // 可能从数据库中返回数组 $a [[id > 5698, first_name > Peter, last_name > G…...
框架分析(5)-Django
框架分析(5)-Django 专栏介绍Django核心概念以及组件讲解模型(Model)视图(View)模板(Template)路由(URLconf)表单(Form)后台管理&…...
常见前端面试之VUE面试题汇总七
20. 对 vue 设计原则的理解 1.渐进式 JavaScript 框架:与其它大型框架不同的是,Vue 被设计 为可以自底向上逐层应用。Vue 的核心库只关注视图层,不仅易于上 手,还便于与第三方库或既有项目整合。另一方面,当与现代化的…...
空时自适应处理用于机载雷达——空时处理基础知识(Matla代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
磁盘阵列/视频集中存储/安防监控视频智能分析平台新功能:安全帽/反光衣/安全带AI识别详解
人工智能技术已经越来越多地融入到视频监控领域中,近期我们也发布了基于AI智能视频云存储/安防监控视频AI智能分析平台的众多新功能,该平台内置多种AI算法,可对实时视频中的人脸、人体、物体等进行检测、跟踪与抓拍,支持口罩佩戴检…...
23款奔驰GLE450轿跑升级原厂外观暗夜套件,战斗感满满的
升级的方案基本都是替换原来车身部位的镀铬件,可能会有人问:“难道直接用改色膜贴黑不好吗?”如果是贴膜的话,第一个是颜色没有那么纯正,这些镀铬件贴黑的技术难度先抛开不说,即使贴上去了,那过…...
win10系统rust串口通信实现
一、用cargo创建新工程 命令:cargo new comport use std::env; use std::{thread, time}; use serialport::{DataBits, StopBits, Parity, FlowControl}; use std::io::{self, Read, Write}; use std::time::Duration;fn main() -> io::Result<()> {let m…...
新生代与老年代
在Java虚拟机(JVM)中,内存被划分为多个不同的区域,其中包括新生代(Young Generation)和老年代(Old Generation)。 新生代是用于存储新创建的对象的区域。大多数对象在创建后很快就变…...
Microsoft正在将Python引入Excel
Excel和Python这两个世界正在碰撞,这要归功于Microsoft的新集成,以促进数据分析和可视化 Microsoft正在将流行的编程语言Python引入Excel。该功能的公共预览版现已推出,允许Excel用户操作和分析来自Python的数据。 “您可以使用 Python 绘图…...
知识速递(六)|ChIP-seq分析要点集锦
书接上文组学知识速递(五)|ChIP-seq知多少?,当我们实验完成,拿到下机数据之后,我们最关心的就是,这个数据能不能用?所谓数据能不能用,其实我们会重点关注以下问题&#x…...
【附安装包】EViews 13.0安装教程|计量经济学|数据处理|建模分析
软件下载 软件:EViews版本:13.0语言:英文大小:369.46M安装环境:Win11/Win10/Win8/Win7硬件要求:CPU2.0GHz 内存4G(或更高)下载通道①百度网盘丨64位下载链接:https://pan.baidu.com…...
Java 语言实现快速排序算法
【引言】 快速排序算法是一种常用且高效的排序算法。它通过选择一个基准元素,并将数组分割成两个子数组,一边存放比基准元素小的元素,另一边存放比基准元素大的元素。然后递归地对这两个子数组进行排序,最终达到整个数组有序的目的…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
