当前位置: 首页 > news >正文

软考高级系统架构设计师系列论文九十二:论新技术的引进

软考高级系统架构设计师系列论文九十二:论新技术的引进

  • 一、摘要
  • 二、正文
  • 三、总结

一、摘要

  • 根据国家税务总局对税务系统内所有系统进行集成与整合的需求,我所在的开发单位组织了全国金税工程防伪税控系统网络版的升级开发工作。该项目工程浩大,要求在具有严格的安全、可靠性能的基础上,将基于Dos操作系统、Foxpro数据库的原单机版防伪税控子系统集成到基于网络的、大型数据库的“集中存储、分布操作”的分布式系统中来,并实现与基于AIX等操作系统和Oracle数据库的稽核协查等其他应用系统的数据共享和互操作。在项目中,我担任项目主管,主要负责系统规划和组织实施工作。我在将近一年的可行性研究、需求分析、系统研发与试点工作中,通过引进面向对象设计方法、采用B/S/S三层体系结构、利用群集实现负载平衡等新技术,使该项目取得了圆满成功,受到了用户的一致好评。但是现在看来,由于新技术的使用,怎样实现软件开发公司对新技术的渗透、怎样开发自主产权的中间件等问题,需要我们在今后系统开发中做进一步探索。

二、正文

  • 2022年元月,我作为项目主管,有幸参与了全国税务系统金税工程防伪税控系统的升级开发工作。防伪税控系统主要由基于增值税发票的企业开票、企业发行、报税、认证、发票发售等五大子系统组成,系统组成模块如图1所示。具体流程是:企业在当地税务机关通过企业发行系统取得用于开具增值税发票的相关设备(金税卡与IC卡)和权限,再到发票发售系统领取增值税发票&#x

相关文章:

软考高级系统架构设计师系列论文九十二:论新技术的引进

软考高级系统架构设计师系列论文九十二:论新技术的引进 一、摘要二、正文三、总结一、摘要 根据国家税务总局对税务系统内所有系统进行集成与整合的需求,我所在的开发单位组织了全国金税工程防伪税控系统网络版的升级开发工作。该项目工程浩大,要求在具有严格的安全、可靠性…...

vue使用Bootstrap的详细方法

要在Vue中使用Bootstrap,您可以按照以下步骤进行操作: 安装Bootstrap:首先,您需要安装Bootstrap。您可以使用npm或者yarn来安装Bootstrap。打开终端,并在项目的根目录中运行以下命令: npm install bootst…...

leetcode做题笔记103. 二叉树的锯齿形层序遍历

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。 思路一:BFS #define N 2000int** zigzagLevelOrder(st…...

如果将PC电脑变成web服务器:利用Nignx反向代理绕过运营商对80端口封锁

如果将PC电脑变成web服务器:利用Nignx反向代理绕过运营商对80端口封锁 在上一篇文章中,我们已经实现了内网主机的多次端口映射,将内网主机的端口映射到了公网,可以通过公网访问该主机了。 因为电信的家庭宽带,默认是…...

Eureka:服务注册-信息配置-自我保护机制

首先在提供者服务下&#xff0c;添加一个依赖 <!-- Eureka --><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-eureka</artifactId><version>1.4.6.RELEASE</version><…...

C++二叉树进阶

本期内容我们讲解二叉树的进阶知识&#xff0c;没有看过之前内容的小伙伴建议先看往期内容 二叉树-----补充_KLZUQ的博客-CSDN博客 目录 二叉搜索树 代码实现 基础框架 Insert Find Erase 析构函数 拷贝构造 赋值 二叉搜索树的应用 全部代码 二叉搜索树 二叉搜索树…...

layui tree组件取消勾选

layui(2.8.15) tree的api中&#xff0c;只有 tree.setChecked(id, idArr) 方法&#xff0c;没有取消勾选的方法。 我的需求是&#xff1a;勾选后做判断&#xff0c;如果不符合条件则取消勾选。 实现方法&#xff1a; 使用 tree的oncheck事件&#xff0c;在回调函数中做判断&…...

【Android基础面试题】ViewPager与ViewPager2的区别

ViewPager和ViewPager2是Android中用于实现滑动页面切换的控件。它们的主要区别如下&#xff1a; 实现方式 ViewPager2的内部实现是RecyclerView&#xff0c;而ViewPager是通过继承自ViewGroup实现的。因此&#xff0c;ViewPager2的性能更高。 滑动方向 ViewPager2可以实现横向…...

springCloudGateway网关配置

1.配置跨域支持 /*** 跨域支持*/ Configuration public class CorsConfig {Beanpublic CorsWebFilter corsFilter() {CorsConfiguration config new CorsConfiguration();config.addAllowedMethod("*");config.addAllowedOrigin("*");config.addAllowedH…...

kali 2023.3新增工具

在终端模拟器中运行 sudo apt update && sudo apt full-upgrade 命令来更新其安装 Kali Linux 2023.3 发布中包含了九个新工具&#xff0c;分别是&#xff1a; Calico&#xff1a;云原生网络和网络安全。 cri-tools&#xff1a;用于Kubelet容器运行时接口的命令行界面…...

W25Q64 驱动--基于SPI2接口

前言 &#xff08;1&#xff09;本系列是基于STM32的项目笔记&#xff0c;内容涵盖了STM32各种外设的使用&#xff0c;由浅入深。 &#xff08;2&#xff09;小编使用的单片机是STM32F105RCT6&#xff0c;项目笔记基于小编的实际项目&#xff0c;但是博客中的内容适用于各种单片…...

禁用无线键盘指定按键

文章目录 前言主体 前言 睡一觉把键盘压坏了一个按键,一开机键盘就自动打出这个字母,我在想用其他按键平替这个字母即可,使用软件修改内部的映射,那么使用autoHotkey软件是十分容易做到的 主体 letter_replace.ahk 创建一个如此命名的文件,然后输入命令即可 a::b 代表平替 a…...

分数规划(二分)

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 小咪是一个土豪手办狂魔&#xff0c;这次他去了一家店&#xff0c;发现了好多好多&#xff08;n个&#xff09;手办&#xff0c;但他是一个很怪的人&#xff0c;每次只想买k个手办&a…...

Vue2向Vue3过度Vue3状态管理工具Pinia

目录 1. 什么是Pinia2. 手动添加Pinia到Vue项目3. Pinia基础使用4. getters实现5. action异步实现6. storeToRefs工具函数7. Pinia的调试8. Pinia持久化插件 1. 什么是Pinia Pinia 是 Vue 的专属的最新状态管理库 &#xff0c;是 Vuex 状态管理工具的替代品 2. 手动添加Pinia到…...

STM32--SPI通信与W25Q64(1)

文章目录 前言SPI通信硬件电路移位过程 SPI时序起始与终止条件交换一个字节 W25Q64硬件电路框图 FLASH操作注意事项软件SPI读写W25Q64 前言 USART串口链接入口 I2C通信链接入口 SPI通信 SPI&#xff08;Serial Peripheral Interface&#xff09;是一种高速的、全双工、同步的串…...

版本控制工具Git常见用法

Git 是一个非常强大和灵活的版本控制工具&#xff0c;提供了许多命令和功能来管理代码的版本、分支、合并等。以下是一些 Git 的详细用法&#xff1a; 配置相关命令&#xff1a; 设置用户名和邮箱&#xff1a; git config --global user.name "Your Name" git conf…...

Multisim软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Multisim软件是一款电路仿真和设计软件&#xff0c;由美国国家仪器公司&#xff08;National Instruments&#xff09;开发。它提供了一个交互式的图形界面&#xff0c;使用户能够轻松地构建和仿真电路。以下是Multisim软件的详…...

【android12-linux-5.1】【ST芯片】HAL移植后开机卡死

按照ST的官方readme移植HAL后开机一直卡在android界面&#xff0c;看logcat提示写文件时errorcode&#xff1a;-13。查下资料大致明白13错误码是权限不足&#xff0c;浏览代码在写文件的接口加日志后&#xff0c;发现是需要写iio:device*/buffer/enable这类文件的时候报错的。千…...

线程池也就那么一回事嘛!

线程池详讲 一、线程池的概述二、线程池三、自定义线程池四、线程池工作流程图五、线程池应用场景 一、线程池的概述 线程池其实就是一种多线程处理形式&#xff0c;处理过程中可以将任务添加到队列中&#xff0c;然后在创建线程后自动启动这些任务。这里的线程就是我们前面学过…...

设计模式(11)观察者模式

一、概述&#xff1a; 1、定义&#xff1a;观察者模式定义了一种一对多的依赖关系&#xff0c;让多个观察者对象同时监听某一个主题对象。这个主题对象在状态发生变化时,会通知所有观察者对象&#xff0c;使它们能够自动更新自己。 2、结构图&#xff1a; public interface S…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...