当前位置: 首页 > news >正文

实战:大数据Spark简介与docker-compose搭建独立集群

文章目录

    • 前言
    • 技术积累
      • Spark简介
      • Spark核心功能及优势
      • Spark运行架构
    • Spark独立集群搭建
      • 安装docker和docker-compose
      • docker-compose编排
      • docker-compose编排并运行容器
    • Spark集群官方案例测试
    • 写在最后

前言

很多同学都使用过经典的大数据分布式计算框架hadoop,其分布式文件系统HDFS对数据管理很友好,但是计算能力较Spark还是不足。俗话说工欲善其事必先利其器,今天就介绍docker容器化部署Spark集群。

技术积累

Spark简介

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。对于分布式计算方面Spark基于内存进行分布式计算,大大提升性能。
在这里插入图片描述

Spark核心功能及优势

更快的速度
内存计算下,Spark 比 Hadoop 快100倍。
易用性
Spark 提供了80多个高级运算符。
通用性
Spark 提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。
支持多种资源管理器
Spark 支持 Hadoop YARN,Apache Mesos,及其自带的独立集群管理器

Spark运行架构

Spark框架的核心是一个计算引擎,整体来说,它采用了标准的master-slave的结构
图所示:展示了一个Spark执行时的基本架构,图中的Driver表示master,负责管理整个集群中的作业任务调度。图中的Executor则是slave,负责实际执行任务。
在这里插入图片描述

用户程序创建 SparkContext 后,它会连接到集群资源管理器,集群资源管理器会为用户程序分配计算资源,并启动 Executor;
Driver 将计算程序划分为不同的执行阶段和多个 Task,之后将 Task 发送给 Executor;
Executor 负责执行 Task,并将执行状态汇报给 Driver,同时也会将当前节点资源的使用情况汇报给集群资源管理器。

Spark独立集群搭建

安装docker和docker-compose

docker与docker-compose安装
#安装docker社区版
yum install docker-ce
#版本查看
docker version
#docker-compose插件安装
curl -L https://github.com/docker/compose/releases/download/1.21.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
#可执行权限
chmod +x /usr/local/bin/docker-compose
#版本查看
docker-compose version

docker-compose编排

docker-compose-spark.yaml

version: "3.3"
services:master:image: registry.cn-hangzhou.aliyuncs.com/senfel/spark:3.2.1container_name: masteruser: rootcommand: " /opt/bitnami/java/bin/java -cp /opt/bitnami/spark/conf/:/opt/bitnami/spark/jars/* -Xmx1g org.apache.spark.deploy.master.Master --host master --port 7077 --webui-port 8080 "environment:- SPARK_MODE=master- SPARK_RPC_AUTHENTICATION_ENABLED=no- SPARK_RPC_ENCRYPTION_ENABLED=no- SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no- SPARK_SSL_ENABLED=novolumes:- ./python:/pythonnetwork_mode: hostextra_hosts:- "master:10.10.22.91"- "localhost.localdomain:127.0.0.1"worker1:image: registry.cn-hangzhou.aliyuncs.com/senfel/spark:3.2.1container_name: worker1user: rootenvironment:- SPARK_MODE=worker- SPARK_MASTER_URL=spark://master:7077- SPARK_WORKER_MEMORY=1G- SPARK_WORKER_CORES=1- SPARK_RPC_AUTHENTICATION_ENABLED=no- SPARK_RPC_ENCRYPTION_ENABLED=no- SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no- SPARK_SSL_ENABLED=nonetwork_mode: hostextra_hosts:- "master:10.10.22.91"- "localhost.localdomain:127.0.0.1"worker2:image: registry.cn-hangzhou.aliyuncs.com/senfel/spark:3.2.1container_name: worker2user: rootenvironment:- SPARK_MODE=worker- SPARK_MASTER_URL=spark://master:7077- SPARK_WORKER_MEMORY=1G- SPARK_WORKER_CORES=1- SPARK_RPC_AUTHENTICATION_ENABLED=no- SPARK_RPC_ENCRYPTION_ENABLED=no- SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no- SPARK_SSL_ENABLED=nonetwork_mode: hostextra_hosts:- "master:10.10.22.91"- "localhost.localdomain:127.0.0.1"

docker-compose编排并运行容器

docker-compose -f docker-compose-spark.yaml up -d
在这里插入图片描述

浏览器访问
http://10.10.22.91:8080/
在这里插入图片描述

至此Spark独立集群搭建完成。
当然如果需要整合HDFS可以直接搭建一个Hadoop集群。这里不再累述,请参照之前的博文。
在这里插入图片描述

Spark集群官方案例测试

1、任意选择一个节点执行圆周率计算,这里选择master
#查看spark master容器信息
docker ps | grep master
#进入容器 默认就会进入/opt/bitnami/spark
docker exec -it master bash
#执行官方计算圆周率的案例
./bin/spark-submit --master spark://master:7077 --class org.apache.spark.examples.SparkPi ./examples/jars/spark-examples_2.12-3.2.1.jar 1000

参数:
–master 提交集群
–class 运行主类路径
1000 运行1000次

2、查看执行结果
Pi is roughly 3.141485671414857
计算次数越多这个圆周率精度越准确
在这里插入图片描述
在这里插入图片描述

写在最后

Spark是采用分布式数据集RDD对数据进行管理,用内存进行分布式计算,它的性能叫hadoop有显著的提升。对于Spark独立集群的搭建我们用docker容器也是比较的简单,当然,我们也可以集成在springboot开发出适应业务的功能安装需求进行远程提交任务。

相关文章:

实战:大数据Spark简介与docker-compose搭建独立集群

文章目录 前言技术积累Spark简介Spark核心功能及优势Spark运行架构 Spark独立集群搭建安装docker和docker-composedocker-compose编排docker-compose编排并运行容器 Spark集群官方案例测试写在最后 前言 很多同学都使用过经典的大数据分布式计算框架hadoop,其分布式…...

嵌入性视角下的企业集成创新网络演化过程

从嵌入性角度来看,集成创新网络以社会关系嵌入或结构嵌入的联结方式,实 现创新资源共享。由于规模经济和能力的差异,较高的信息复杂程度往往更强调网 络化和外部组织之间的联合而不是一体化。企业集成创新网络依靠创新网络结点上 企业的合…...

回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现FA-ELM萤火虫算法优化极限学习机多输入单输出回归预测(多指标,多图)效果一览基本介绍…...

数据结构数组栈的实现

Hello,今天我们来实现一下数组栈,学完这个我们又更进一步了。 一、栈 栈的概念 栈是一种特殊的线性表,它只允许在固定的一端进行插入和删除元素的操作。 进行数据的插入和删除只在栈顶实现,另一端就是栈底。 栈的元素是后进先出。…...

成集云 | 抖店连接器客户静默下单催付数据同步钉钉 | 解决方案

源系统成集云目标系统 方案介绍 随着各品牌全渠道铺货,主播在平台上直播时客户下了订单后不能及时付款,第一时间客户收不到提醒,不仅造成了客户付款率下降,更大量消耗了企业的人力成本和经济。而成集云与钉钉深度合作&#xff0…...

【算法专题突破】双指针 - 复写零(2)

目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:1089. 复写零 - 力扣(Leetcode) 我先来读题, 题目的意思非常的简单,其实就是, 遇到 0 就复制一个写进数组&a…...

【Java从0到1学习】11 Java集合框架

1. Collection 1.1 Java类中集合的关系图 1.2 集合类概述 在程序中可以通过数组来保存多个对象,但在某些情况下开发人员无法预先确定需要保存对象的个数,此时数组将不再适用,因为数组的长度不可变。例如,要保存一个学校的学生信…...

uniapp使用uni.chooseLocation()打开地图选择位置

使用uni.chooseLocation()打开地址选择位置&#xff1a; 在Uniapp源码视图进行设置 添加这个属性&#xff1a;"requiredPrivateInfos":["chooseLocation"] ​ </template><view class"location_box"><view class"locatio…...

学习笔记|课后练习解答|电磁炉LED实战|逻辑运算|STC32G单片机视频开发教程(冲哥)|第八集(下):课后练习分析与解答

文章目录 课后练习解答需求分解增加KEY3控制代码如下&#xff1a; 第一版代码问题分析Tips&#xff1a;STC-ISP的设置 Tips&#xff1a;定时器实现完整电磁炉显示功能的代码测试流程 总结 课后练习解答 增加按键3&#xff0c;按下后表示启动&#xff0c;选择的对应的功能的LED…...

前端高频面试题 js中堆和栈的区别和浏览器的垃圾回收机制

一、 栈(stack)和 堆(heap) 栈(stack)&#xff1a;是栈内存的简称&#xff0c;栈是自动分配相对固定大小的内存空间&#xff0c;并由系统自动释放&#xff0c;栈数据结构遵循FILO&#xff08;first in last out&#xff09;先进后出的原则&#xff0c;较为经典的就是乒乓球盒结…...

自然语言处理:大语言模型入门介绍

自然语言处理&#xff1a;大语言模型入门介绍 语言模型的历史演进大语言模型基础知识预训练Pre-traning微调Fine-Tuning指令微调Instruction Tuning对齐微调Alignment Tuning 提示Prompt上下文学习In-context Learning思维链Chain-of-thought提示开发&#xff08;调用ChatGPT的…...

使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化

本文整理自 NebulaGraph PD 方扬在「NebulaGraph x KubeBlocks」meetup 上的演讲&#xff0c;主要包括以下内容&#xff1a; NebulaGraph 3.x 发展历程NebulaGraph 最佳实践 建模篇导入篇查询篇 NebulaGraph 3.x 的发展历程 NebulaGraph 自 2019 年 5 月开源发布第一个 alp…...

对于pycharm 运行的时候不在cmd中运行,而是在python控制台运行的情况,如何处理?

对于pycharm 运行的时候不在cmd中运行&#xff0c;而是在python控制台运行的情况&#xff0c;如何处理&#xff1f; 比如&#xff0c;你在运行你的代码的时候 它总在python控制台运行&#xff0c;十分难受 解决方法 在pycharm中设置下即可&#xff0c;很简单 选择运行点击…...

Spring MVC 二 :基于xml配置

创建一个基于xml配置的Spring MVC项目。 Idea创建新项目&#xff0c;pom文件引入依赖&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>5.2.12.RELEASE</version>…...

springboot aop方式实现接口入参校验

一、前言 在实际开发项目中&#xff0c;我们常常需要对接口入参进行校验&#xff0c;如果直接在业务代码中进行校验&#xff0c;则会显得代码非常冗余&#xff0c;也不够优雅&#xff0c;那么我们可以使用aop的方式校验&#xff0c;这样则会显得更优雅。 二、如何实现&#xf…...

解决git上传远程仓库时的大文件提交

在git中超过100M的文件会上传失败&#xff0c;而当一个文件超过50M时会给你警告&#xff0c;如下 warning: File XXXXXX is 51.42 MB; this is larger than GitHubs recommended maximum file size of 50.00 MB 解决这种问题&#xff0c;首先在项目的.git文件夹中找到.gitigno…...

HTML学习笔记02

HTML笔记02 页面结构分析 元素名描述header标题头部区域的内容&#xff08;用于页面或页面中的一块区域&#xff09;footer标记脚部区域的内容&#xff08;用于整个页面或页面的一块区域&#xff09;sectionWeb页面中的一块独立区域article独立的文章内容aside相关内容或应用…...

<C++> 内存管理

1.C/C内存分布 让我们先来看看下面这段代码 int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] {1, 2, 3, 4};char char2[] "abcd";char *pChar3 "abcd";int *ptr1 (int *) mal…...

【Java】ByteBuffer类的arrayOffset方法详解+示例

arrayOffset功能详解;arrayOffset在position等于0和非0两种场景下的demo。使用类java.nio.ByteBuffer中的arrayOffset()方法可以获得这个缓冲区的第一个元素在底层支持(backing)数组中的偏移量。 如果这个buffer底层是由数组支持的,那么buffer的postion p对应于数组的index…...

【C++】C++ 引用详解 ⑤ ( 函数 “ 引用类型返回值 “ 当左值被赋值 )

文章目录 一、函数返回值不能是 " 局部变量 " 的引用或指针1、函数返回值常用用法2、分析函数 " 普通返回值 " 做左值的情况3、分析函数 " 引用返回值 " 做左值的情况 函数返回值 能作为 左值 , 是很重要的概念 , 这是实现 " 链式编程 &quo…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...