当前位置: 首页 > news >正文

多头自注意力机制的代码实现

文章目录

  • 1、自注意力机制
  • 2、多头注意力机制

  • transformer的整体结构:
    在这里插入图片描述

1、自注意力机制

  • 自注意力机制如下:
    在这里插入图片描述
  • 计算过程:
    在这里插入图片描述
  • 代码如下:
class ScaledDotProductAttention(nn.Module):def __init__(self, embed_dim, key_size, value_size):super().__init__()self.W_q = nn.Linear(embed_dim, key_size, bias=False)self.W_k = nn.Linear(embed_dim, key_size, bias=False)self.W_v = nn.Linear(embed_dim, value_size, bias=False)def forward(self, x, attn_mask=None):"""Args:X: shape: (N, L, embed_dim), input sequence, 是经过input embedding后的输入序列,L个embed_dim维度的嵌入向量attn_mask: (N, L, L),用于对注意力矩阵(L, L)进行mask输出:shape:(N, L, embed_dim)"""query = self.W_q(x)  # (N, L, key_size)key = self.W_k(x)  # (N, L, key_size)value = self.W_v(x)  # (N, L, value_size)scores = torch.matmul(query, key.transpose(1, 2)) / math.sqrt(query.size(2))if attn_mask is not None:scores = scores.masked_fill(attn_mask, 0)attn_weights = F.softmax(scores, dim=-1)	# dim为-1表示,对每个嵌入向量与其他所有向量的注意力权重,进行softmax,以使每一行的和为1return torch.matmul(attn_weights, value)

2、多头注意力机制

  • 结构如下:
    在这里插入图片描述
  • 计算过程如下:
class MultiHeadSelfAttention(nn.Module):def __init__(self, embed_dim, num_heads, key_size, value_size, bias=False):super().__init__()self.embed_dim = embed_dimself.num_heads = num_headsself.q_head_dim = key_size // num_headsself.k_head_dim = key_size // num_headsself.v_head_dim = value_size // num_headsself.W_q = nn.Linear(embed_dim, key_size, bias=bias)self.W_k = nn.Linear(embed_dim, key_size, bias=bias)self.W_v = nn.Linear(embed_dim, value_size, bias=bias)        self.q_proj = nn.Linear(key_size, key_size, bias=bias)self.k_proj = nn.Linear(key_size, key_size, bias=bias)self.v_proj = nn.Linear(value_size, value_size, bias=bias)self.out_proj = nn.Linear(value_size, embed_dim, bias=bias)def forward(self, x):"""Args:X: shape: (N, L, embed_dim), input sequence, 是经过input embedding后的输入序列,L个embed_dim维度的嵌入向量Returns:output: (N, L, embed_dim)"""query = self.W_q(x)  # (N, L, key_size)key = self.W_k(x)  # (N, L, key_size)value = self.W_v(x)  # (N, L, value_size)q, k, v = self.q_proj(query), self.k_proj(key), self.v_proj(value)N, L, value_size = v.size()q = q.reshape(N, L, self.num_heads, self.q_head_dim).transpose(1, 2)k = k.reshape(N, L, self.num_heads, self.k_head_dim).transpose(1, 2)v = v.reshape(N, L, self.num_heads, self.v_head_dim).transpose(1, 2)att = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(k.size(-1))att = F.softmax(att, dim=-1)output = torch.matmul(att, v)output = output.transpose(1, 2).reshape(N, L, value_size)output = self.out_proj(output)return output

相关文章:

多头自注意力机制的代码实现

文章目录 1、自注意力机制2、多头注意力机制 transformer的整体结构: 1、自注意力机制 自注意力机制如下: 计算过程: 代码如下: class ScaledDotProductAttention(nn.Module):def __init__(self, embed_dim, key_size, value_…...

抽象工厂模式

目录 了解抽象工厂模式前的前置知识 什么是抽象工厂模式? 为什么要提出抽象工厂模式? 抽象工厂模式中的四大角色? 抽象工厂模式的优缺点? 抽象工厂模式的适用场景? 了解抽象工厂模式前的前置知识 在讲抽象工厂模式…...

登录校验-Filter-详解

目录 执行流程 拦截路径 过滤器链 小结 执行流程 过滤器Filter拦截到请求之后,首先执行方放行之前的逻辑,然后执行放行操作(doFilter),然后会访问对应的Web资源(对应的Controller类)&#…...

堆栈方法区笔记记录

成员变量分两种: 1)实例变量:没有static修饰,属于对象,存储在堆中,有几个对象就有几份,通过对象点来访问 2)静态变量:由static修饰,属于类,存储在方法区中,只有一份,通过类名点来访…...

新版微信小程序获取用户手机号

小程序手机号验证组件有两种 手机号快速验证组件 //原生写法 <button open-type"getPhoneNumber" bindgetphonenumber"getPhoneNumber"></button>Page({getPhoneNumber (e) {console.log(e.detail.code)} })uniapp写法 <button open-type…...

CSS实践 —— 悬浮盒子阴影加上移效果

悬浮盒子阴影加上移效果 代码 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>Title</title><style>body{background-color: #f5f5f5;}.shadow {width: 100px;height: 100px;margin:…...

安全测试基础知识

软件安全测试是评估和测试系统以发现系统及其数据的安全风险和漏洞的过程。没有通用术语&#xff0c;但出于我们的目的&#xff0c;我们将评估定义为分析和发现漏洞&#xff0c;而不尝试实际利用这些漏洞。我们将测试定义为发现和尝试利用漏洞。 安全测试通常根据要测试的漏洞…...

列表首屏毫秒级加载与自动滚动定位方案

引用自 摸鱼wiki 场景 <template><div ref"commentsRef"><divv-for"comment in displayComments":key"comment.id":data-cell-id"comment.id"class"card">{{ comment.data }}</div></div> &…...

小区物业业主管理信息系统设计的设计与实现(论文+源码)_kaic

摘 要 随着互联网的发展&#xff0c;网络技术的发展变得极其重要&#xff0c;所以依靠计算机处理业务成为了一种社会普遍的现状。管理方式也自然而然的向着现代化技术方向而改变&#xff0c;所以纯人工管理方式在越来越完善的现代化管理技术的比较之下也就显得过于繁琐&#x…...

Fortran 微分方程求解 --ODEPACK

最近涉及到使用Fortran对微分方程求解&#xff0c;我们知道MATLAB已有内置的函数&#xff0c;比如ode家族&#xff0c;ode15s&#xff0c;对应着不同的求解办法。通过查看odepack的官方文档&#xff0c;我尝试使用了dlsode求解刚性和非刚性常微分方程组。 首先是github网址&am…...

8路光栅尺磁栅尺编码器或16路高速DI脉冲信号转Modbus TCP网络模块 YL99-RJ45

特点&#xff1a; ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 高速光栅尺磁栅尺4倍频计数&#xff0c;频率可达5MHz ● 模块可以输出5V的电源给光栅尺或传感器供电 ● 支持8个光栅尺同时计数&#xff0c;可识别正反转 ● 可以设置作为16路独立DI高速计数器 ● 可网…...

【Python】函数

None类型 思考&#xff1a;若函数没有使用return语句返回数据&#xff0c;那么函数有返回值吗&#xff1f; 答&#xff1a;实际上是有的&#xff0c;Python中有一个特殊的字面量None&#xff0c;其类型是<class ‘NoneType’>&#xff0c;无返回值的函数&#xff0c;实…...

centos安装MySQL 解压版完整教程(按步骤傻瓜式安装

一、卸载系统自带的 Mariadb 查看&#xff1a; rpm -qa|grep mariadb 卸载&#xff1a; rpm -e --nodeps mariadb-libs-5.5.68-1.el7.x86_64 二、卸载 etc 目录下的 my.cnf 文件 rm -rf /etc/my.cnf 三、检查MySQL是否存在 有则先删除 #卸载mysql服务以及删除所有mysql目录 #没…...

【后端速成 Vue】第一个 Vue 程序

1、为什么要学习 Vue&#xff1f; 为什么使用 Vue? 回想之前&#xff0c;前后端交互的时候&#xff0c;前端收到后端响应的数据&#xff0c;接着将数据渲染到页面上&#xff0c;之前使用的是 JavaScript 或者 基于 JavaScript 的 Jquery&#xff0c;但是这两个用起来还是不太…...

Macbook pro M1 安装Ubuntu教程

先讲下心路历程 由于版主最近刚切换到Mac&#xff0c;所以在安装的时候一上手就选择了virutalbox&#xff0c;结果报错“The installer has detected an unsupported architecture. VirtualBox only runs on the amd64 architecture.” 后来去Reddit论坛上一看&#xff0c;才知…...

前端console.log打印内容与后端请求返回数据不一致

后端传值num0 前端打印num1 ,如图&#xff0c;console.log后台显示的数据与展开后不一致 造成该问题原因是深拷贝与浅拷贝的问题。 var obj JSON.parse(JSON.stringify(res)) 修改后打印 正常...

SQL入门:多表查询

SQL&#xff0c;或者说结构化查询语言(Structured Query Language)&#xff0c;是用于管理和操作关系型数据库的标准语言。在本篇文章中&#xff0c;我们将重点介绍SQL中的多表查询&#xff0c;这是一种强大的工具&#xff0c;可以帮助我们从多个相关的表格中获取数据。 数据库…...

【C++】进一步认识模板

&#x1f3d6;️作者&#xff1a;malloc不出对象 ⛺专栏&#xff1a;C的学习之路 &#x1f466;个人简介&#xff1a;一名双非本科院校大二在读的科班编程菜鸟&#xff0c;努力编程只为赶上各位大佬的步伐&#x1f648;&#x1f648; 目录 前言一、非类型模板参数二、模板的特…...

Mysql Oracle 区别

1. oracle select *, id需要在星号前加别名&#xff0c;mysql则不需要 mysql语法&#xff1a; select *, id from xin_student_t;oracle语法&#xff1a; select st.*, st.id from xin_student_t st;2. oracle表定义了别名&#xff0c;在查询时可以不用别名指定字段&#xf…...

华为OD-第K长的连续字母字符串长度

题目描述 给定一个字符串&#xff0c;只包含大写字母&#xff0c;求在包含同一字母的子串中&#xff0c;长度第 k 长的子串的长度&#xff0c;相同字母只取最长的那个子串。 代码实现 # coding:utf-8 # 第K长的连续字母字符串长度 # https://www.nowcoder.com/discuss/353150…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...