当前位置: 首页 > news >正文

【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录

  • 引言
  • 一、线性方程组的基本概念与表达形式
  • 二、线性方程组解的基本定理
  • 三、线性方程组解的结构
  • 写在最后


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组
在这里插入图片描述
称为 n n n 元齐次线性方程组。

方程组
在这里插入图片描述
称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

X = ( x 1 , x 2 , … , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,,xn)T ,矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
在这里插入图片描述
则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=01.2 A X = b ( 2.2 ) AX=b(2.2) AX=b2.2


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门。

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A| = 0. A=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A|=0. A=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks 为任意常数。
  2. η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2++ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2++ks=1.
  5. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2++ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

相关文章:

【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录 引言一、线性方程组的基本概念与表达形式二、线性方程组解的基本定理三、线性方程组解的结构写在最后 引言 继向量的学习后&#xff0c;一鼓作气&#xff0c;把线性方程组也解决了去。O.O 一、线性方程组的基本概念与表达形式 方程组 称为 n n n 元齐次线性方程组…...

使用Python写入数据到Excel:实战指南

在数据科学领域&#xff0c;Excel是一种广泛使用的电子表格工具&#xff0c;可以方便地进行数据管理和分析。然而&#xff0c;当数据规模较大或需要自动化处理时&#xff0c;手动操作Excel可能会变得繁琐。此时&#xff0c;使用Python编写程序将数据写入Excel文件是一个高效且便…...

接口测试总结分享(http与rpc)

接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 一、了解一下HTTP与RPC 1. HTTP&#xff08;H…...

数据结构(Java实现)LinkedList与链表(下)

** ** 结论 让一个指针从链表起始位置开始遍历链表&#xff0c;同时让一个指针从判环时相遇点的位置开始绕环运行&#xff0c;两个指针都是每次均走一步&#xff0c;最终肯定会在入口点的位置相遇。 LinkedList的模拟实现 单个节点的实现 尾插 运行结果如下&#xff1a; 也…...

linux查看正在运行的nginx在哪个文件夹当中

1、查出Nginx进程PID ps -ef|grep nginx2、查看Nginx进程启动时的工作目录 ls -la /proc/<PID>/cwd将<PID>替换为第一步中列出的Nginx进程的PID。该命令会显示Nginx进程在启动时所在的工作目录&#xff08;当前工作目录&#xff09;...

Vue实现Excel表格中按钮增加小数位数,减少小数位数功能,多用于处理金融数据

效果图 <template><div><el-button click"increaseDecimals">A按钮</el-button><el-button click"roundNumber">B按钮</el-button><el-table :data"tableData" border><el-table-column v-for&q…...

自然语言处理(一):词嵌入

词嵌入 词嵌入&#xff08;Word Embedding&#xff09;是自然语言处理&#xff08;NLP&#xff09;中的一种技术&#xff0c;用于将文本中的单词映射到一个低维向量空间中。它是将文本中的单词表示为实数值向量的一种方式。 在传统的文本处理中&#xff0c;通常使用独热编码&…...

【HSPCIE仿真】HSPICE仿真基础

HSPICE概述 1. HSPICE简介3. 标准输入文件4. 标准输出文件3. HSPCIE仿真过程 1. HSPICE简介 SPICE &#xff08;Simulation Program with IC Emphasis&#xff09;是1972 年美国加利福尼亚大学柏克莱分校电机工程和计算机科学系开发 的用于集成电路性能分析的电路模拟程序。 …...

二、前端监控之方案调研

前端监控体系 一个完整的前端监控体系包括了日志采集、日志上报、日志存储、日志切分&计算、数据分析、告警等流程。 对于一名前端开发工程师来说&#xff0c;也就意味着工作不再局限于前端业务的开发工作&#xff0c;需要有Nginx服务运维能力、实时/离线分析能力、Node应…...

npm 创建 node.js 项目

package.json重要说明 package.json是创建任何node.js项目必须要有的一个文件。 因为在package.json文件中&#xff0c;有详细的项目描述&#xff0c; 包括&#xff1a; (1)项目名称&#xff1a;name (2)版本&#xff1a;version (3)依赖文件&#xff1a;dependencies 等…...

JMeter性能测试(上)

一、基础简介 界面 打开方式 双击 jmeter.bat双击 ApacheJMeter.jsr命令行输入 java -jar ApacheJMeter.jar 目录 BIN 目录&#xff1a;存放可执行文件和配置文件 docs目录&#xff1a;api文档&#xff0c;用于开发扩展组件 printable-docs目录&#xff1a;用户帮助手册 li…...

自定义date工具类 DateUtils.java

自定义date工具类 DateUtils.java 简介 Date日期类型的工具类。 api 日期格式化 format(Date date)&#xff1b;日期格式化 format(Date date, String pattern)&#xff1b;计算距离现在多久&#xff0c;非精确 getTimeBefore(Date date);计算距离现在多久&#xff0c;精确…...

Linux(Ubuntu)安装docker

2017年的3月1号之后&#xff0c;Docker 的版本命名开始发生变化&#xff0c;同时将 CE 版本和 EE 版本进行分开。 Docker社区版&#xff08;CE&#xff09;&#xff1a;为了开发人员或小团队创建基于容器的应用,与团队成员分享和自动化的开发管道。docker-ce 提供了简单的安装…...

Apache Poi 实现Excel多级联动下拉框

由于最近做的功能&#xff0c;需要将接口返回的数据列表&#xff0c;输出到excel中&#xff0c;以供后续导入&#xff0c;且网上现有的封装&#xff0c;使用起来都较为麻烦&#xff0c;故参考已有做法封装了工具类。 使用apache poi实现excel联动下拉框思路 创建隐藏单元格&a…...

常见的 HTML<meta> 标签的 name 属性及其作用

HTML中的 <meta> 标签可以通过 name 属性提供元数据&#xff0c;这些元数据可以用于指定有关文档的信息&#xff0c;以及控制浏览器和搜索引擎的行为。name 属性通常与其他属性一起使用&#xff0c;如 content、charset、http-equiv 等&#xff0c;以提供更具体的元数据信…...

【网络安全】理解报文加密、数字签名能解决的实际问题

文章目录 前言1. 防止报文泄露 —— 加密体系的出现1.1 理解非对称加密体系的实施难点1.2 加密体系的实际应用 2. 防止报文被篡改 —— 数字签名的出现2.1 数字签名的原理2.2 数字签名的实施难点2.2 数字签名的实际应用 —— 引入摘要算法 3. 实体鉴别 —— CA证书 后记 前言 …...

linux中安装nodejs,卸载nodejs,更新nodejs

卸载nodejs 卸载node sudo apt-get remove nodejs清理掉自动安装的并且不需要软件包 sudo apt autoremove查看node相关的文件 sudo whereis node如果有文件需要手动删除文件 删除该文件命令 sudo rm -rf /usr/local/bin/node在此查看node -v 是未找到&#xff0c;说明你已经…...

浅谈Python网络爬虫应对反爬虫的技术对抗

在当今信息时代&#xff0c;数据是非常宝贵的资源。而作为一名专业的 Python 网络爬虫程序猿&#xff0c;在进行网页数据采集时经常会遭遇到各种针对爬虫行为的阻碍和限制&#xff0c;这就需要我们掌握一些应对反爬机制的技术手段。本文将从不同层面介绍如何使用 Python 进行网…...

代理池在过程中一直运行

Hey&#xff0c;爬虫达人们&#xff01;在爬虫的过程中&#xff0c;要保持代理池的稳定性可不容易。今天就来和大家分享一些实用经验&#xff0c;教你如何让代理池在爬虫过程中一直运行&#xff01;方法简单易行&#xff0c;让你的爬虫工作更顺畅. 在进行爬虫工作时&#xff0…...

基于Java+SpringBoot+Vue前后端分离党员教育和管理系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...