当前位置: 首页 > news >正文

机器学习基础之《分类算法(4)—案例:预测facebook签到位置》

一、背景

1、说明

2、数据集
row_id:签到行为的编码
x y:坐标系,人所在的位置
accuracy:定位的准确率
time:时间戳
place_id:预测用户将要签到的位置

3、数据集下载
https://www.kaggle.com/navoshta/grid-knn/data
国内下不了,无法收验证码,还是在csdn用积分下一个别人上传的

二、流程分析

1、获取数据

2、数据处理
目的:
    特征值
    目标值
    a.缩小数据范围
      根据坐标缩小范围
      2 < x < 2.5
      1 < y < 1.5
    b.时间戳
      time -> 年月日时分秒
      早上签到,可能是公园、通勤的路上
      周六签到,可能在商场、在家睡觉
    c.过滤签到次数少的地点
    d.数据集划分

3、特征工程
标准化

4、KNN算法预估器流程

5、模型选择与调优

6、模型评估

三、代码

1、day02_facebook_demo

import pandas as pd# 1、获取数据
data = pd.read_csv("./FBlocation/train.csv")data.head()# 2、基本的数据处理
# 1)缩小数据范围
data = data.query("x < 2.5 & x > 2 & y < 1.5 & y > 1")data# 2)处理时间特征
time_value = pd.to_datetime(data["time"], unit="s")time_value.valuesdate = pd.DatetimeIndex(time_value)data["day"] = date.daydata["weekday"] = date.weekdaydata["hour"] = date.hourdata# 3、过滤掉签到次数少的地点
place_count = data.groupby("place_id").count()["row_id"]place_count[place_count > 3].head()data_final = data[data["place_id"].isin(place_count[place_count > 3].index.values)]data_final.head()# 筛选特征值和目标值
# 特征值
x = data_final[["x", "y", "accuracy", "day", "weekday", "hour"]]
# 目标值
y = data_final["place_id"]x.head()y.head()# 数据集划分
from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(x, y)from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV# 3、特征工程:标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
# 用训练集的平均值和标准差对测试集的数据来标准化
# 这里测试集和训练集要有一样的平均值和标准差,而fit的工作就是计算平均值和标准差,所以train的那一步用fit计算过了,到了test这就不需要再算一遍自己的了,直接用train的就可以
x_test = transfer.transform(x_test)
# 4、KNN算法预估器
estimator = KNeighborsClassifier()
# 加入网格搜索和交叉验证
# 参数准备
param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
estimator.fit(x_train, y_train)
# 5、模型评估
# 方法1:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
#最佳参数:best_params_
print("最佳参数:\n", estimator.best_params_)
#最佳结果:best_score_
print("最佳结果:\n", estimator.best_score_)
#最佳估计器:best_estimator_
print("最佳估计器:\n", estimator.best_estimator_)
#交叉验证结果:cv_results_
print("交叉验证结果:\n", estimator.cv_results_)

2、运行结果

相关文章:

机器学习基础之《分类算法(4)—案例:预测facebook签到位置》

一、背景 1、说明 2、数据集 row_id&#xff1a;签到行为的编码 x y&#xff1a;坐标系&#xff0c;人所在的位置 accuracy&#xff1a;定位的准确率 time&#xff1a;时间戳 place_id&#xff1a;预测用户将要签到的位置 3、数据集下载 https://www.kaggle.com/navoshta/gr…...

【Java】反射 之 调用方法

调用方法 我们已经能通过Class实例获取所有Field对象&#xff0c;同样的&#xff0c;可以通过Class实例获取所有Method信息。Class类提供了以下几个方法来获取Method&#xff1a; Method getMethod(name, Class...)&#xff1a;获取某个public的Method&#xff08;包括父类&a…...

Java——单例设计模式

什么是设计模式&#xff1f; 设计模式是在大量的实践中总结和理论化之后优选的代码结构、编程风格、以及解决问题的思考方式。设计模式免去我们自己再思考和摸索。就像是经典的棋谱&#xff0c;不同的棋局&#xff0c;我们用不同的棋谱、“套路”。 经典的设计模式共有23种。…...

Java实现excel表数据的批量存储(结合easyexcel插件)

场景&#xff1a;加哥最近在做项目时&#xff0c;苦于系统自身并未提供数据批量导入的功能还不能自行添加上该功能&#xff0c;且自身不想手动一条一条将数据录入系统。随后&#xff0c;自己使用JDBC连接数据库、使用EasyExcel插件读取表格并将数据按照业务逻辑批量插入数据库完…...

Config:客户端连接服务器访问远程

springcloud-config: springcloud-config push pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocatio…...

【KMP算法-代码随想录】

目录 1.什么是KMP2.什么是next数组3.什么是前缀表&#xff08;1&#xff09;前后缀含义&#xff08;2&#xff09;最长公共前后缀&#xff08;3&#xff09;前缀表的必要性 4.计算前缀表5.前缀表与next数组&#xff08;1&#xff09;使用next数组来匹配 6.构造next数组&#xf…...

【手写promise——基本功能、链式调用、promise.all、promise.race】

文章目录 前言一、前置知识二、实现基本功能二、实现链式调用三、实现Promise.all四、实现Promise.race总结 前言 关于动机&#xff0c;无论是在工作还是面试中&#xff0c;都会遇到Promise的相关使用和原理&#xff0c;手写Promise也有助于学习设计模式以及代码设计。 本文主…...

计算机网络-笔记-第二章-物理层

目录 二、第二章——物理层 1、物理层的基本概念 2、物理层下面的传输媒体 &#xff08;1&#xff09;光纤、同轴电缆、双绞线、电力线【导引型】 &#xff08;2&#xff09;无线电波、微波、红外线、可见光【非导引型】 &#xff08;3&#xff09;无线电【频谱的使用】 …...

前端开发中的单伪标签清除和双伪标签清除

引言 在前端开发中&#xff0c;我们经常会遇到一些样式上的问题&#xff0c;其中之一就是伪元素造成的布局问题。为了解决这个问题&#xff0c;我们可以使用伪标签清除技术。本篇博客将介绍单伪标签清除和双伪标签清除的概念、用法和示例代码&#xff0c;并详细解释它们的原理…...

云计算中的数据安全与隐私保护策略

文章目录 1. 云计算中的数据安全挑战1.1 数据泄露和数据风险1.2 多租户环境下的隔离问题 2. 隐私保护策略2.1 数据加密2.2 访问控制和身份验证 3. 应对方法与技术3.1 零知识证明&#xff08;Zero-Knowledge Proofs&#xff09;3.2 同态加密&#xff08;Homomorphic Encryption&…...

MacOS软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 MacOS是一种由苹果公司开发的操作系统&#xff0c;专门用于苹果公司的计算机硬件。它被广泛用于创意和专业应用程序&#xff0c;如图像设计、音频和视频编辑等。以下是关于MacOS的详细介绍。 1、MacOS的历史和演变 MacOS最初于…...

【linux进程概念】

目录&#xff1a; 冯诺依曼体系结构操作系统进程 基本概念描述进程-PCBtask_struct-PCB的一种task_ struct内容分类组织进程查看进程 fork()函数 冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺…...

直击成都国际车展:远航汽车多款车型登陆车展,打造完美驾乘体验

随着市场渗透率日益高涨&#xff0c;新能源汽车成为今年成都国际车展的关注焦点。在本届车展上&#xff0c;新能源品牌占比再创新高&#xff0c;覆盖两个展馆&#xff0c;印证了当下新能源汽车市场的火爆。作为大运集团重磅打造的高端品牌&#xff0c;远航汽车深度洞察高端智能…...

android nv21 转 yuv420sp

上面两个函数的目标都是将NV21格式的数据转换为YUV420P格式&#xff0c;但是它们在处理U和V分量的方式上有所不同。 在第一个函数NV21toYUV420P_1中&#xff0c;U和V分量的处理方式是这样的&#xff1a;对于U分量&#xff0c;它从NV21数据的Y分量之后的每个奇数位置取数据&…...

使用Nacos与Spring Boot实现配置管理

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

初识【类和对象】

目录 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 5.类的作用域 6.类的实例化 7.类的对象大小的计算 8.类成员函数的this指针 1.面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的…...

软考高级系统架构设计师系列论文八十六:论企业应用集成

软考高级系统架构设计师系列论文八十六:论企业应用集成 一、企业应用集成相关知识点二、摘要三、正文四、总结一、企业应用集成相关知识点 软考高级系统架构设计师系列之:企业集成平台技术的应用和架构设计二、摘要 2022年10月,我参加了***车站综合信息平台项目的开发,承…...

HarmonyOS ArkUI 属性动画入门详解

HarmonyOS ArkUI 属性动画入门详解 前言属性动画是什么&#xff1f;我们借助官方的话来说&#xff0c;我们自己简单归纳下 参数解释举个例子旋转动画 位移动画组合动画总结 前言 鸿蒙OS最近吹的很凶&#xff0c;赶紧卷一下。学习过程中发现很多人吐槽官方属性动画这一章比较敷…...

基于XGBoots预测A股大盘《上证指数》(代码+数据+一键可运行)

对AI炒股感兴趣的小伙伴可加WX&#xff1a;caihaihua057200&#xff08;备注&#xff1a;学校/公司名字方向&#xff09; 另外我还有些AI的应用可以一起研究&#xff08;我一直开源代码&#xff09; 1、引言 在这期内容中&#xff0c;我们回到AI预测股票&#xff0c;转而探索…...

5G NR:PRACH频域资源

PRACH在频域位置由IE RACH-ConfigGeneric中参数msg1-FrequencyStart和msg1-FDM所指示&#xff0c;其中&#xff0c; msg1-FrequencyStart确定PRACH occasion 0的RB其实位置相对于上行公共BWP的频域其实位置(即BWP 0)的偏移&#xff0c;即确定PRACH的频域起始位置msg1-FDM的取值…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...