当前位置: 首页 > news >正文

GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等

目录

​专题一:初识GEE和PIE遥感云平台

专题二:GEE和PIE影像大数据处理基础

专题三:数据整合Reduce

专题四:云端数据可视化

专题五:数据导入导出及资产管理

专题六:机器学习算法

专题七:专题练习与回顾

更多应用


随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)和航天宏图的PIE Engine等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。作为国内最先进的遥感云平台,PIE Engine近年来发展发非常迅速,拥有丰富的国产卫星数据,以及中国区域的其它重要开源数据,在数据安全性和访问便利性方面具有独到的优势。与传统的处理影像工具(例如ENVI)相比,遥感云平台一方面提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。

如今,GEE/PIE等遥感云平台凭借其强大的功能正受到越来越多国内外科技工作者的关注,应用范围也在不断扩大。本课程致力于帮助科研工作者掌握GEE和PIE的实际应用能力,以JavaScript编程语言为基础,结合实例讲解遥感云的基本概念知识、影像大数据分析、经典应用案例等方面的进阶技能。为了提高教学质量,本课程将融合最先进的ChatGPT等AI自然语言模型辅助教学,协助学员解答疑惑、提供针对性建议和指导,不仅让学员更深入地掌握课程内容,还为今后自助学习提供高效的个性化的学习体验。

​专题一:初识GEE和PIE遥感云平台

(1)GEE和PIE平台及典型应用案例介绍
(2)JavaScript基础,包括变量,运算符,数组,判断及循环语句等
(3)遥感云重要概念与典型数据分析流程
(4)遥感云基本对象及平台上手
影像与影像集
几何体、要素与要素集
日期、字符、数字
数组、列表、字典
影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等主要对象最常用API介绍

专题二:GEE和PIE影像大数据处理基础

(1)关键知识点讲解
影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等
影像掩码,裁剪和镶嵌
集合对象的循环迭代(map/iterate)
集合对象联合(Join)
影像面向对象分析
(2)主要功能串讲与演练
Landsat/Sentinel-2影像批量去云
Landsat/Sentinel-2传感器归一化、植被指数计算等
时间序列光学影像的平滑与空间插值

专题三:数据整合Reduce

(1)关键知识点讲解
影像与影像集整合,如指定时窗的年度影像合成
影像区域统计与领域统计,分类后处理
要素集属性列统计 
栅格与矢量的相互转换
分组整合与区域统计
影像集、影像和要素集的线性回归分析
(2)主要功能串讲与演练
研究区可用Landsat影像的数量和无云观测数量的统计分析
中国区域年度NDVI植被数合成及年度最绿的DOY时间查找
国家尺度30年尺度的降雨量时空变化趋势分析

专题四:云端数据可视化

(1)关键知识点讲解
要素与要素集属性制图(条形图、直方图、堆积柱形图、散点图等)
影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)
影像集制图(样点时间序列图、区域统计时间序列图等)
数组与链表制图(散点图、样线图等)
图形风格和属性设置
(2)主要功能串讲与演练
基于MODIS时间序列影像的不同地表植被物候分析与制图
基于Hansen产品的年度森林时空变化分析与专题图绘制

专题五:数据导入导出及资产管理

(1)关键知识点讲解
不同矢量数据上传个人资产
影像数据上传个人资产、属性设置等
影像批量导出(Asset和Driver)
矢量数据导出(Asset和Driver)
空间统计分析结果导出
(2)主要功能串讲与演练
PIE平台国产卫星数据下载
影像合成批量导出及下载
地面样地对应遥感指标数据导出

专题六:机器学习算法

(1)关键知识点讲解
样本抽样(随机抽样、分层随机抽样)
监督分类算法(随机森林、CART、贝叶斯、SVM、决策树等)
非监督分类算法(wekaKMeans、wekaLVQ等)
分类精度评估
(2)主要功能串讲与演练
联合光学与雷达时间序列影像的森林动态监测
水体自动提取与洪涝监测

专题七:专题练习与回顾

(1)GEE土地利用分类综合案例,实现主要功能串讲,包括地面样本准备、多源遥感影像预处理、算法开发、分类后处理、精度评估和空间统计分析与制图等环节
(2)经典PIE案例代码讲解与学习
夜间灯光指数提取
长时间尺度植被覆盖度反演
水域动态监测
农作物种植面积提取
荒漠化程度提取
(3)人口密度动态变化分析学员征集案例讲解与答疑
GEE与PIE平台切换、代码优化、常见错误与调试总结


更多应用

GEE入门学习,遥感云大数据分析、管理与可视化以及在林业应用丨灾害、水体与湿地领域应用丨GPT模型应用_WangYan2022的博客-CSDN博客近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。https://blog.csdn.net/WangYan2022/article/details/131678440?spm=1001.2014.3001.5502【高分论文密码】大尺度空间模拟预测和数字制图技术和不确定性分析_WangYan2022的博客-CSDN博客结合经典的例子讲解R语言在空间数据处理、管理以及可视化的操作,从空间数据计量、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升、降尺度技术、空间模拟偏差订正技术、数据可视化、知识图谱等方面让您全方位掌握R语言大尺度空间数据分析模拟预测及可视化技术。https://blog.csdn.net/WangYan2022/article/details/130800531?spm=1001.2014.3001.5502最新基于Citespace、vosviewer、R语言文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法_WangYan2022的博客-CSDN博客通过文献计量学讲解、高效选题、数据库检索数据下载、软件使用等八个专题详细讲解,让学员系统全面的掌握文献计量学的基本理论和知识;熟练掌握Citespace和vosviewer及R语言文献可视化分析技术;最终实现从主题确定、数据分析绘图、文章框架与写作,全流程掌握一篇文献信息可视化分析报告(论文)的思路逻辑与技术方法。https://blog.csdn.net/WangYan2022/article/details/131889523?spm=1001.2014.3001.5502

相关文章:

GEE/PIE遥感大数据处理与典型案例丨数据整合Reduce、云端数据可视化、数据导入导出及资产管理、机器学习算法等

目录 ​专题一:初识GEE和PIE遥感云平台 专题二:GEE和PIE影像大数据处理基础 专题三:数据整合Reduce 专题四:云端数据可视化 专题五:数据导入导出及资产管理 专题六:机器学习算法 专题七:…...

STM32--DMA

文章目录 DMA简介DMA特性 DMA框图DMA基本结构DMA请求数据宽度对齐DMA数据转运工程DMAADC多通道 DMA简介 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的…...

mongodb和redis的用途

MongoDB和Redis都是常见的NoSQL数据库,它们有不同的特点和用途。 MongoDB的主要特点和用途: 数据存储:MongoDB是一种面向文档的数据库,以JSON样式的BSON文档(二进制JSON)的形式存储数据。它支持复杂的数据…...

【动手学深度学习】--18.图像增广

文章目录 图像增广1.常用的图像增广方法1.1翻转和裁剪1.2改变颜色1.3结合多种图像增广方法 2.使用图像增广进行训练3.训练 图像增广 官方笔记:图像增广 学习视频:数据增广【动手学深度学习v2】 图像增广在对训练图像进行一系列的随机变化之后&#xff…...

数据分析--统计学知识

描述型统计 描述统计 1.集中趋势 :众数、平均数、分位数 2.离散趋势: 极值(max)、极差(max-min)、平均差、方差、标准差、分位差 3.分布:峰泰、偏度 推理型统计 概率分布:离散型…...

matlab 计算点云协方差矩阵

目录 一、概述1、算法概述2、主要函数二、代码示例三、结果展示四、参数解析输入参数输出参数五、参考链接本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述...

python进阶之图像编程 pillow扩展库

一、概述 1.1pillow简介 Python Imaging Library (PIL)是python 下的图像处理模块,支持多种格式,并提供强大的图像处理功能,可以通过pip进行安装后使用。 1.2pillow具体应用 Pillow 库是 Python3 最常用的图像处理库,它支持多种图像格式&a…...

TiCDC Canal-JSON 消息接收示例(Java 版)

1.引言 业务程序经常会通过各式各样的缓存来提升用户的访问速度。 由于存在缓存,在一些实时性要求较高的场景中,需要在数据变更的同时将数据缓存进行更新或删除。 如果数据本身由其他业务部门提供,就无法在写入的同时做缓存的一致性处理。…...

SQLite、MySQL、PostgreSQL3个关系数据库之间的对比

引言 关系数据模型以行和列的表格形式组织数据,在数据库管理工具中占主导地位。今天还有其他数据模型,包括NoSQL和NewSQL,但是关系数据库管理系统(RDBMS)仍然占主导地位用于存储和管理全球数据。 本文比较了三种实现最…...

开源容灾备份软件,开源cdp备份软件

数据的安全性和完整性面临着硬件问题、黑客攻击、人为错误等各种威胁。在这种环境下,开源容灾备份软件应运而生,通过提供自动数据备份和恢复,有效地保证了公司的数据安全。 一、开源容灾备份软件的定义和作用 开源容灾备份软件是一种基于开源…...

Java合并区间

问题: 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 示例: 示例 1&#xff…...

前端面试:【代码质量与工程实践】单元测试、集成测试和持续集成

在现代软件开发中,确保代码质量是至关重要的。单元测试、集成测试和持续集成是关键的工程实践,用于提高代码的可靠性和可维护性。本文将深入探讨这些概念,以及它们如何在软件开发中发挥作用。 1. 单元测试(Unit Testing&#xff0…...

2023/8/17总结

项目完善: 算法推荐 item-CF 算法推荐我主要写的是协同过滤算法,然后协同过滤算法分成俩种—— 基于用户的 user-CF 基于物品的 item-CF 因为害怕用户冷启动,和数据量的原因 我选择了 item-CF 主要思路是——根据用户的点赞列表&…...

REDIS 7 教程 数据类型-进阶篇

⑥ *位图 bitmap 1. 理论 由0和1 状态表现的二进制位的bit 数组。 说明:用String 类型作为底层数据结构实现的一种统计二值状态的数据类型 位图本质是数组,它是基于String 数据类型的按位操作。该数组由多个二进制位组成,每个二进制位都对应一个偏…...

图文并茂:Python Tkinter从入门到高级实战全解析

目录 介绍什么是Tkinter?准备工作第一个Tkinter程序界面布局事件处理补充知识点 文本输入框复选框和单选框列表框弹出对话框 综合案例:待办事项列表总结 介绍 欢迎来到本篇文章,我们将带您深入了解如何在Python中使用Tkinter库来创建图形用…...

npm和yarn的区别?

文章目录 前言npm和yarn的作用和特点npm和yarn的安装的机制npm安装机制yarn安装机制检测包解析包获取包链接包构建包 总结后言 前言 这一期给大家讲解npm和yarn的一些区别 npm和yarn的作用和特点 包管理:npm 和 yarn 可以用于安装、更新和删除 JavaScript 包。它们提…...

微服务项目容器编排docker-compose.yml、Dockerfile文件模板、相关配置文件、shell脚本

nacos Dockerfile&#xff08;不需要特殊处理&#xff0c;使用docker conpose可以不写&#xff09; # 基础镜像 FROM nacos/nacos-server # author MAINTAINER jianglifeng<jlifengfoxmail.com> RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \ &&a…...

算法通过村第三关-数组黄金笔记|数组难解

文章目录 前言数组中出现超过一半的数字数组中只出现一次的数字颜色的分类问题(荷兰国旗问题)基于冒泡排序的双指针&#xff08;快慢指针&#xff09;基于快排的双指针&#xff08;对撞指针&#xff09; 总结 前言 提示&#xff1a;苦不来自外在环境中的人、事、物&#xff0c;…...

【2023】LeetCode HOT 100——矩阵

目录 1. 矩阵置零1.1 C++实现1.2 Python实现1.3 时空分析2. 螺旋矩阵2.1 C++实现2.2 Python实现2.3 时空分析3. 旋转图像3.1 C++实现3.2 Python实现3.3 时空分析4. 搜索二维矩阵 II4.1 C++实现4.2 Python实现4.3 时空分析1. 矩阵置零 🔗 原题链接:...

springboot源码方法

利用LinkedHashSet移除List重复的数据protected final <T> List<T> removeDuplicates(List<T> list) {return new ArrayList<>(new LinkedHashSet<>(list));} SpringFactoriesLoader#loadFactoryNames 加载配置文件...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注&#xff1a;文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件&#xff1a;STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...

生产管理系统开发:专业软件开发公司的实践与思考

生产管理系统开发的关键点 在当前制造业智能化升级的转型背景下&#xff0c;生产管理系统开发正逐步成为企业优化生产流程的重要技术手段。不同行业、不同规模的企业在推进生产管理数字化转型过程中&#xff0c;面临的挑战存在显著差异。本文结合具体实践案例&#xff0c;分析…...

在ubuntu等linux系统上申请https证书

使用 Certbot 自动申请 安装 Certbot Certbot 是 Let’s Encrypt 官方推荐的自动化工具&#xff0c;支持多种操作系统和服务器环境。 在 Ubuntu/Debian 上&#xff1a; sudo apt update sudo apt install certbot申请证书 纯手动方式&#xff08;不自动配置&#xff09;&…...