基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
本文基于QPSO-LSTM算法进行负荷、光伏和风电等时间序列的预测。它包括了经过粒子群算法优化后的LSTM(PSOLSTM)和经过量子粒子群算法优化后的LSTM(QPSOLSTM)的对比实验。该代码可用于风电和光伏等负荷的预测,数据为时间序列数据,输入和输出均为单一变量。代码的模块化编写使得更换数据变得简单,只需导入自己的数据即可使用。该模型具有高精确度。QPSO算法是一种较新的智能算法,具有一定的创新性。基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法研究是一个很有挑战性的课题。
1.了解风电、负荷等时间序列预测问题:首先,需要深入了解风电、负荷等时间序列的特点和问题,例如季节性变化、周期性波动、日变化等。还需探讨该问题的背景和现有的预测方法。
2.学习量子粒子群算法(QPSO):研究QPSO算法的原理和特点,了解其在优化问题上的应用。可以通过阅读相关论文和教材来掌握这一算法。
3.研究基于LSTM的时间序列预测算法:学习LSTM模型的原理和应用,了解其在时间序列预测领域的性能和局限性。可以通过阅读LSTM相关的文献和实现一些简单的案例来加深理解。
4.设计QPSO算法与LSTM的结合方式:将QPSO算法与LSTM模型结合起来,设计一种新的优化方法。可以考虑在LSTM网络的训练过程中引入QPSO算法来优化神经网络的参数。
5.收集数据集并进行实验:选择合适的风电、负荷等时间序列数据集,将其分为训练集和测试集。在训练集上使用设计好的QPSO优化的LSTM模型进行参数训练,然后在测试集上进行预测,并评估模型的性能。
6.实验结果分析与讨论:对实验结果进行分析和比较,与传统的时间序列预测方法进行对比。可以通过评价指标例如均方根误差(RMSE)、平均绝对误差(MAE)等来评估模型的性能。
7.讨论和展望:根据实验结果进行讨论,分析QPSO优化的LSTM模型的效果和优势,并提出进一步改进的方向和思考。
需要注意的是,具体的研究工作还需要根据实际情况和实验需求进行具体的调整和补充。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]杨晋岭,靳云龙.基于QPSO-ELM-KF的电力系统短期负荷预测[J].太原科技大学学报,2023,44(01):27-33.
[2]乔鹏,田俊梅.基于改进QPSO-SVM的输电线路覆冰厚度预测[J].自动化与仪表,2023,38(02):10-14+34.DOI:10.19557/j.cnki.1001-9944.2023.02.003.
[3]赵泽昆,王瑶,陈超等.基于量子粒子群优化BP神经网络的风机出力预测[J].电器与能效管理技术,2019(24):45-50.DOI:10.16628/j.cnki.2095-8188.2019.24.009.
🌈4 Matlab代码实现
相关文章:

基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

SQL Server软件安装包分享(附安装教程)
目录 一、软件简介 二、软件下载 一、软件简介 SQL Server是一种关系型数据库管理系统,由美国微软公司开发。它被设计用于存储、管理和查询数据,被广泛应用于企业级应用、数据仓库和电子商务等场景。 以下是SQL Server软件的主要特点和功能࿱…...

基于Django的博客管理系统
1、克隆仓库https://gitee.com/lylinux/DjangoBlog.git 若失效:https://gitee.com/usutdzxy/DjangoBlog.git 2、环境安装 pip install -Ur requirements.txt3、修改djangoblog/setting.py 修改数据库配置,其他的步骤就按照官方文档。 DATABASES {def…...

windows系统依赖环境一键安装
window系统程序依赖库,可以联系我获取15958139685 脚本代码如下,写到1. bat文件中,双击直接运行,等待安装完成即可 Scku.exe -AVC.exe /SILENT /COMPONENTS"icons,ext\reg\shellhere,assoc,assoc_sh" /dir%1\VC...
centos7安装nacos
解决 Nacos 国内下载速度缓慢的问题 方案 1. 选择相应的版本源码下载 1.1 依次点击 1、2、3 选中我们的最新稳定版本 1.4.0 1.2 点击下载 ZIP、或者 clone 也行,这里都可以 2. 本地编译 2.1 预备环境准备 2.2 解压编译 3. 启动验证 3.1 解压 3.2 启动服务器 3…...

【python】python智能停车场数据分析(代码+数据集)【独一无二】
👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…...
如何使用Redis来防止穿透、击穿和雪崩问题
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 史上最全文档AI绘画stablediffusion资料分享 AI绘画关于SD,MJ,GPT,SDXL百科全书 「java、python面试题」…...

以getPositionList为例,查找接口函数定义及接口数据格式定义
job-app-master/pages/index/index.vue中299行 async getPositionList(type refresh, pulldown false) {this.status 请求中;if (type refresh) {this.query.page 1;} else {this.query.page;}let res await this.$apis.getPositionList(this.query);if (res) {if (type …...

一生一芯8——在github上添加ssh key
为在github上下载代码框架,这里在github上使用ssh key进行远程连接,方便代码拉取 参照博客https://blog.csdn.net/losthief/article/details/131502734 本机 系统ubuntu22.04 git 版本2.34.1 本人是第一次配置,没有遇到奇奇怪怪的错误&…...
2023年6月电子学会Python等级考试试卷(一级)答案解析
青少年软件编程(Python)等级考试试卷(一级) 一、单选题(共25题,共50分) 1. 可以对Python代码进行多行注释的是?( ) A. #...

ppt如何转pdf文档?用这个方法可将ppt转pdf
在现代社会中,PPT(幻灯片)已成为一种常见的演示工具,被广泛应用于学术、商务、培训等领域。然而,PPT文件的使用和分享存在一些问题,例如文件格式不兼容、内容修改易被篡改等。为了解决这些问题,将PPT转换为PDF格式已成…...

Hope.money:新兴DeFi项目如何重新定义稳定币生态的未来?
联储加息导致金融市场紧缩,Terra、3AC、FTX等知名中心化机构未能妥善应对而暴雷,并重创了整个加密货币市场,导致参与者损失惨重。这些事件揭示了中心化机构的局限,投资者对其资产掌控权的担忧愈发强烈。 自2018年首个DeFi协议Com…...

使用 S3 生命周期精确管理对象生命周期
在亚马逊工作这些年,我发现 S3 的生命周期配置是管理对象生命周期的重要但复杂的工具。在这篇文章中,我将利用实战经验,深入剖析生命周期,从核心概念到实际应用。 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活…...

RocketMQ零拷贝原理
1 PageCache ●由内存中的物理page组成,其内容对应磁盘上的block。 ●page cache的大小是动态变化的。 ●backing store:cache缓存的存储设备。 ●一个page通常包含多个block,而block不一定是连续的。 1.1读Cache ●当内核发起一个读请求时&#x…...
HTML <tbody> 标签
实例 带有 thead、tbody 以及 tfoot 元素的 HTML 表格: <table border="1"><thead><tr><th>Month</th><th>Savings</th></tr></thead><tfoot><tr><td>Sum</td><td>$180<…...

4.22 TCP 四次挥手,可以变成三次吗?
目录 为什么 TCP 挥手需要四次呢? 粗暴关闭 vs 优雅关闭 close函数 shotdown函数 什么情况会出现三次挥手? 什么是 TCP 延迟确认机制? TCP 序列号和确认号是如何变化的? 在一些情况下, TCP 四次挥手是可以变成 T…...
鲁棒性简述
鲁棒性(Robustness)是指系统或算法对于异常情况或不良条件的抵抗能力和适应能力。一个鲁棒性强的系统能够在面对异常、噪声、错误或意外情况时,仍能够保持高效的运行或输出可接受的结果。 鲁棒性是在设计和开发系统时要考虑的一个重要特性&am…...
复习leetcode
460. LFU 缓存 31. 下一个排列 322. 零钱兑换 662. 二叉树最大宽度 43. 字符串相乘...
从聚类(Clustering)到异常检测(Anomaly Detection):常用无监督学习方法的优缺点
一、引言 无监督学习是机器学习的一种重要方法,与有监督学习不同,它使用未标记的数据进行训练和模式发现。无监督学习在数据分析中扮演着重要的角色,能够从数据中发现隐藏的模式、结构和关联关系,为问题解决和决策提供有益的信息。…...
git仓库提交流程
拉取最新代码 cd dev-ops git拉取最新master代码: git checkout master git pull git checkout wangdachu_dev git merge master :wq 1、切换到文件的本地目录 cd ~/Desktop/aldaba-ops 2、修改用户名和邮箱 git config --global user.email "xxxxxxxxxx.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

[C++错误经验]case语句跳过变量初始化
标题:[C错误经验]case语句跳过变量初始化 水墨不写bug 文章目录 一、错误信息复现二、错误分析三、解决方法 一、错误信息复现 write.cc:80:14: error: jump to case label80 | case 2:| ^ write.cc:76:20: note: crosses initialization…...