当前位置: 首页 > news >正文

数学建模-建模算法(4)

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。

- 线性规划:使用scipy.optimize.linprog()函数
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 整数规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为整数
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', integer=True)
print(res)
```



- 多元规划:使用scipy.optimize.linprog()函数
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1, 1], [1, 2, 3]]
b = [6, 4, 5]
x0_bounds = (None, None, None)
x1_bounds = (-3, -3, -3)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 二次规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为平方项
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', square_root=True)
print(res)
```



- 遗传算法:使用DEAP库
 

```python
from deap import base, creator, tools, algorithms
import randomcreator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)def evalOneMax(individual):return sum(individual),toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)population = toolbox.population(n=300)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
```



- 动态规划:使用scipy.optimize.linprog()函数,并将目标函数转换为动态规划问题
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 贪心算法:使用scipy.optimize.linprog()函数,并将目标函数转换为贪心策略
 

```python
from scipy.optimize import linprogc = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
while not res.success:if not res.fun:print("Objective function value is 0 at point %s" % res.x)breakif res.status == 4:print("The algorithm could not find a feasible solution for the problem")breakprint(res)res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
print(res)
```

下次再更新一些高难度的常见算法。
 

相关文章:

数学建模-建模算法(4)

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。 - 线性规划:使用scipy.optimize.linprog()函数 python from scipy.optimize import linprogc [-1, 4] A [[-3, 1], [1, 2]] b [6, 4] x0_bounds (None, None) x1_bound…...

python之函数返回数据框

1.原始文件 ##gff-version 3 Chr1A IWGSC_v2.1 gene 40098 70338 33 - . IDTraesCS1A03G0000200;previous_idTraesCS1A02G000100;primconfHC;NameTraesCS1A03G0000200;cdsCDS_OK;mappingfullMatchWithMissmatches Chr1A IWGSC_v2.1 mRN…...

电子商务安全体系架构技术方面

技术方面是本文所要阐述的主要方面,因为它能够依靠企业自 身的努力来达到令人满意的安全保障效果。目前,关于电子商务安全体系的研究比 较多,有基于层次的体系,也有基于对象的体系,还有基于风险管理的体系&#xff0…...

新安装IDEA 常用插件、设置

新安装IDEA 常用插件、设置 mybatiscodeHelperProRestfulToolkit-fixJrebelmybatis log freepojo to jsonGrep ConsoleMaven HelperCamelCaseCamelCase常用设置 mybatiscodeHelperPro mapper.xml 编码校验 sql 生成,代码生成 RestfulToolkit-fix URI 跳转到对应的…...

ChromeOS 的 Linux 操作系统和 Chrome 浏览器分离

导读科技媒体 Ars Technica 报道称,谷歌正在将 ChromeOS 的浏览器从操作系统中分离出来 —— 让它变得更像 Linux。虽然目前还没有任何官方消息,但这项变化可能会在本月的版本更新中推出。 据介绍,谷歌将该项目命名为 "Lacros"——…...

哔哩哔哩 B站 bilibili 视频倍速设置 视频倍速可自定义

目录 一、复制如下代码 二、在B站视频播放页面进入控制台 三、将复制的代码粘贴到下方输入框,并 回车Enter 即可 四、然后就可以了 一、复制如下代码 (该代码用于设置倍速为3,最后的数值是多少就是多少倍速,可以带小数点&#…...

Lazada商品详情接口 获取Lazada商品详情数据 Lazada商品价格接

一、引言 随着电子商务的迅速发展和普及,电商平台之间的竞争也日趋激烈。为了提供更好的用户体验和更高效的后端管理,Lazada作为东南亚最大的电商平台之一,开发了一种商品详情接口(Product Detail API)。该接口允许第…...

路由攻击(ospf attack)及C/C++代码实现

开放式最短路径优先(OSPF)是应用最广泛的域内路由协议之一。不幸的是,它有许多严重的安全问题。OSPF上的伪造是可能导致路由循环和黑洞的最关键的漏洞之一。 大多数已知的OSPF攻击基于伪造攻击者控制的路由器的链路状态通告(LSA&…...

nginx配置站点强制开启https

当站点域名配置完SSL证书后,如果要强制开启HTTPS,可以在站点配置文件中加上: #HTTP_TO_HTTPS_START if ($server_port !~ 443){rewrite ^(/.*)$ https://$host$1 permanent; } #HTTP_TO_HTTPS_END 附上完整的配置完SSL证书,强制…...

Jacoco XML 解析

1 XML解析器对比 1. DOM解析器: ○ 优点:易于使用,提供完整的文档树,可以方便地修改和遍历XML文档。 ○ 缺点:对大型文档消耗内存较多,加载整个文档可能会变慢。 ○ 适用场景:适合小型XML文档…...

【面试题】JDK(工具包)、JRE(运行环境和基础库)、JVM(java虚拟机)之间的关系?

【面试题】JDK、JRE、JVM之间的关系? JDK(Java Development Kit):Java开发工具包,提供给Java程序员使用,包含了JRE,同时还包含了编译器javac与自带的调试工具Jconsole、jstack等。 JRE(Java Runtime Environment):Java运行时环境&…...

软件设计师学习笔记7-输入输出技术+总线+可靠性+性能指标

目录 1.输入输出技术 1.1数据传输控制方式 1.2中断处理过程 2.总线 3.可靠性 3.1可靠性指标 3.2串联系统与并联系统 3.3混合模型 4.性能指标 1.输入输出技术 即CPU控制主存与外设交互的过程 1.1数据传输控制方式 (1)程序控制(查询)方式&…...

Windows下MATLAB调用Python函数操作说明

MATLAB与Python版本的兼容 具体可参看MATLAB与Python版本的兼容 操作说明 操作说明请参看下面两个链接: 操作指南 简单说明: 我安装的是MATLAB2022a和Python3.8.6(安装时请勾选所有可以勾选的,包括路径)。对应版本安…...

【android12-linux-5.1】【ST芯片】驱动与HAL移植后数据方向异常

ST的传感器驱动与HAL一直成功后,能拿到数据了,但是设备是横屏,系统默认是竖屏。就会出现屏幕自动转动时方向是错的的情况,设备横立展示的是竖屏,设备竖立展示的是横屏。 这个是PCB上设计的传感器贴片方向和横屏不一致…...

JavaScript Es6_3笔记

JavaScript 进阶 文章目录 JavaScript 进阶编程思想面向过程面向对象 构造函数原型对象constructor 属性对象原型原型继承原型链 了解构造函数原型对象的语法特征,掌握 JavaScript 中面向对象编程的实现方式,基于面向对象编程思想实现 DOM 操作的封装。 …...

Qt产生随机数

Qt产生随机数 提问:注意:实现: 提问: 有没有小伙伴遇到这么一种情况,使用rand()和qrand()函数生成的随机数好像不是那么随机,每次都一样。那这种就叫做“伪随机”,因为没有种随机数种子&#x…...

postgresql常用函数-数学函数

postgresql常用函数 简介数学函数算术运算符绝对值取整函数乘方与开方指数与对数整数商和余数弧度与角度常量 π符号函数生成随机数 简介 函数(function)是一些预定义好的代码模块,可以将输入进行计算和处理,最终输出一个 结果值…...

【排序】快速排序(前后指针法)—— 考的最少的一种算法

以从小到大的顺序进行说明。 前后指针法 是指对于一个数组,定义前后各一个指针(prev 和 cur) prev用于卡一个比基准值大的值进行交换cur用于向前遍历出比基准值小的,和prev进行交换 图解 初始化 选出基准值4 如果cur 所在的值…...

软考:中级软件设计师:关系代数:中级软件设计师:关系代数,规范化理论函数依赖,它的价值和用途,键,范式,模式分解

软考:中级软件设计师:关系代数 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 &…...

openCV实战-系列教程2:阈值与平滑处理(图像阈值/图像平滑处理/高斯/中值滤波)、源码解读

1、图像阈值 t图像阈值函数,就是需要判断一下像素值大于一个数应该怎么处理,小于一个数应该怎么处理 ret, dst cv2.threshold(src, thresh, maxval, type) 参数解析: src: 原始输入图,只能输入单通道图像&#…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...