当前位置: 首页 > news >正文

openCV实战-系列教程2:阈值与平滑处理(图像阈值/图像平滑处理/高斯/中值滤波)、源码解读

1、图像阈值

t图像阈值函数,就是需要判断一下像素值大于一个数应该怎么处理,小于一个数应该怎么处理 

ret, dst = cv2.threshold(src, thresh, maxval, type)

参数解析: 

  • src: 原始输入图,只能输入通道图像,通常来说为灰度图
  • dst: 输出图
  • thresh: 指定的阈值
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
  • cv2.THRESH_BINARY:超过阈值部分取maxval(最大值),否则取0
    • 如果阈值取150,超过150就会都变成255,否则变为0
  • cv2.THRESH_BINARY_INV:THRESH_BINARY的反转
  • cv2.THRESH_TRUNC:大于阈值部分设为阈值,否则不变
  • cv2.THRESH_TOZERO:大于阈值部分不改变,否则设为0
  • cv2.THRESH_TOZERO_INV:THRESH_TOZERO的反转
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB# 读取图像为灰度图
img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 五种参数都设置一遍
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
_, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
_, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
_, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
_, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)# 存到一个变量中
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]# 放到一起画出来
for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()

这里(ret,thresh)我们基本上只需要第二个参数就行了,输出图:

  • 第一张是原始图像
  • 第二张,所有大于127的区域全部变成了白色
  • 第三张,将第二张进行了翻转
  • 第四张,所有大于127的全部等于127
  • 第五张,小于127全部为0 ,大于127的不变 
  • 第六张,第五张的反转

2、图像平滑 

 图像平滑处理就是对图像进行各种滤波操作,这个和卷积操作有一些相似

首先读取打印原始图像:

import cv2  # opencv读取的格式是BGR
import matplotlib.pyplot as plt  # Matplotlib是RGB
img = cv2.imread('lenaNoise.png')
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印的图像: 

可以看到原始图像有很多白色斑点的噪音,接下来用几种不同滤波操作过滤这个噪音点

2.1 均值滤波

实际上是一个简单的平均卷积操作,如下图是一个图像的像素点的矩阵:

比如圈住的这个部分,是一个3*3的区域,对这3*3的9个像素值求出一个均值,然后将中间的204替换成这个均值,那么就完成了204的滤波操作,其他的像素点也是进行这样的操作。当然也可以是一个5*5的区域,只能是奇数。

实现这个操作很简单:

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))
cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印结果:

 可以发现白点被淡化了一些,但是还是存在

2.2 方框滤波

基本上和均值滤波一样:

# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

这里可以选择normalize的取值,当选择和True的时候,和均值滤波没有任何区别。

但是选择False 的时候,容易发生越界的行为

2.3 高斯滤波

高斯滤波也可以叫做高斯均值滤波,它主要对目标像素点的周围的像素点就是加上了一些加权,离它近的就影响大远的就小。比如3*3中,上下左右都是0.8,斜对角的都是0.6的。

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印结果:

 噪音点看起来比之前的平滑了一些。

 2.4 中值滤波

 这个做法需要,把方框内的值进行从大到小进行排序,把排在中间那个值替换目标像素的值

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

打印结果:

 这个效果非常好

2.5 对比

将所有结果放在一起:

# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

相关文章:

openCV实战-系列教程2:阈值与平滑处理(图像阈值/图像平滑处理/高斯/中值滤波)、源码解读

1、图像阈值 t图像阈值函数,就是需要判断一下像素值大于一个数应该怎么处理,小于一个数应该怎么处理 ret, dst cv2.threshold(src, thresh, maxval, type) 参数解析: src: 原始输入图,只能输入单通道图像&#…...

C语言第五章-循环结构练习

1、设计一个小型模拟彩票中奖机,已知彩票中奖号码是一个固定的3位数(原始号码)。对任意一个3位数,取出它的每位数字和原始号码的每位数字比较,有1位数相同中三等奖,有2位数相同中二等奖,有3位数…...

Echarts面积图2.0(范围绘制)

代码: // 以下代码可以直接粘贴在echarts官网的示例上 // 范围值 let normalValue {type: 内部绘制,minValue: 200,maxValue: 750 } // 原本的绘图数据 let seriesData [820, 932, 901, 934, 1290, 1330, 1320] let minData Array.from({length: seriesData.len…...

flink checkpoint时exact-one模式和atleastone模式的区别

背景: flink在开启checkpoint的时候有两种模式可以选择,exact-one和atleastone模式,那么这两种模式有什么区别呢? exact-one和atleastone模式的区别 先说结论:exact-one可以完全做到状态的一致性,而atle…...

QEMU 仿真RISC-V freeRTOS 程序

1. 安裝RISC-V 仿真環境 --QEMU 安裝包下載地址: https://www.qemu.org/ 安裝命令及安裝成功效果如下所示, target-list 設定爲riscv32-softmmu, $ cat ~/project/qemu-8.0.4/install.sh sudo apt-get install libglib2.0-dev sudo apt-get install libpixman-1-dev ./co…...

用大白话来讲讲多线程的知识架构

感觉多线程的知识又多又杂,自从接触java,就在一遍一遍捋脉络和深入学习。现在将这次的学习成果展示如下。 什么是多线程? 操作系统运行一个程序,就是一个线程。同时运行多个程序,就是多线程。即在同一时间&#xff0…...

【uniapp】微信小程序 , 海报轮播图弹窗,点击海报保存到本地,长按海报图片分享,收藏或保存

uivew 2.0 uniapp 海报画板 DCloud 插件市场 第一步&#xff0c;下载插件并导入HbuilderX 第二步&#xff0c;文件内 引入 海报组件 <template><painter ref"haibaorefs"></painter> <template> <script>import painter from /comp…...

SpringBoot与前端交互遇到的一些问题

一、XXX.jar中没有主清单属性 场景&#xff1a; SpringBoot打的jar包在Linux运行报错 解决方案&#xff1a; 百度找了很多都是一样的答案&#xff0c;但是解决不了我的问题&#xff0c;于是我新建了一个springboot项目发现打的jar包可以在Linux上运行。检查了下只要把下面这2个…...

Maven介绍与配置+IDEA集成Maven+使用Maven命令

目录 一、Maven简介 二、配置环境变量 三、IDEA集成Maven 1.配置本地仓库地址 2.集成Maven 3. pom.xml文件介绍 四、Maven命令 jar包太多、jar包相互依赖、不方便管理、项目编译还需要jar包&#xff0c;Maven工具来帮你&#xff01; 一、Maven简介 Maven 是 Apache 软…...

毕业设计题目源码-毕业论文参考

目录 java语言ssm框架springboot框架微信小程序jspservletmysqljspservletsqlserverssh框架springmvc框架oracle无数据库 C#/asp/net语言B/S结构 浏览器模式C/S结构 窗体模式 安卓/androidapp 客户端appweb 客户端服务端 php语言php java语言 ssm框架 题目ssm828基于java的珠…...

SSH报错-Terminal shell path: C:\WINDOWS\System32\cmd.exe 此时不应有

最近接盘了实验室的工作&#xff0c;需要重新配置连接自己的VScode的SSH远程连接服务器&#xff0c;结果配置了一个下午都没搞好&#xff0c;决定记录一下&#xff0c;希望大家避免踩坑。在vscode上遇到的是这个报错&#xff1a; 错误日志 [11:40:12.097] Checking ssh with …...

Docker 轻量级可视化工具Portainer

1. 是什么 Portainer 是一款轻量级的应用&#xff0c;它提供了图形化界面&#xff0c;用于方便地管理Docker环境&#xff0c;包括单机环境和集群环境。 2. 安装 2.1 官网 https://www.protainer.io/ https://docs.portainer.io/ce-2.9/start/install/server/docker/linux 2.2 …...

站点平台技术架构

系统架构部署思维导图 平台模块分配&#xff1a; 1.账号模块 2.权限模块 3.站点模块 4.配置模块 5.系统升级 6.日志模块 一、前期工作 1.系统保持一致性方案&#xff1a; GIT版本控制&#xff1a;通过总控端向租户端发送一个更新同步请求&#xff0c;租户端收到请求后执行GI…...

一个以太坊合约的漏洞分析-重入攻击

请找出下列合约漏洞&#xff0c;并说明如何盗取ContractB 中的数字资产&#xff0c;并修复合约。中说明&#xff1a;ContractB 的contract_a接口为ContractA 地址 pragma solidity ^0.8.21; interface ContractA {function get_price() external view returns (uint256); }int…...

测试先行:探索测试驱动开发的深层价值

引言 在软件开发的世界中,如何确保代码的质量和可维护性始终是一个核心议题。测试驱动开发(TDD)为此提供了一个答案。与传统的开发方法相比,TDD鼓励开发者从用户的角度出发,先定义期望的结果,再进行实际的开发。这种方法不仅可以确保代码满足预期的需求,还可以在整个开…...

如何用Dockerfile部署LAMP架构

目录 构建LAMP镜像&#xff08;Dockerfile&#xff09; 第一步 创建工作目录 第二步 编写dockerfile文件 Dockerfile文件配置内容 第三步 编写网页执行文件 第四步 编写启动脚本 第五步 赋权并且构建镜像 第六步 检查镜像 第七步 创建容器 第八步 浏览器测试 构建LA…...

基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

SQL Server软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 SQL Server是一种关系型数据库管理系统&#xff0c;由美国微软公司开发。它被设计用于存储、管理和查询数据&#xff0c;被广泛应用于企业级应用、数据仓库和电子商务等场景。 以下是SQL Server软件的主要特点和功能&#xff1…...

基于Django的博客管理系统

1、克隆仓库https://gitee.com/lylinux/DjangoBlog.git 若失效&#xff1a;https://gitee.com/usutdzxy/DjangoBlog.git 2、环境安装 pip install -Ur requirements.txt3、修改djangoblog/setting.py 修改数据库配置&#xff0c;其他的步骤就按照官方文档。 DATABASES {def…...

windows系统依赖环境一键安装

window系统程序依赖库&#xff0c;可以联系我获取15958139685 脚本代码如下&#xff0c;写到1. bat文件中&#xff0c;双击直接运行&#xff0c;等待安装完成即可 Scku.exe -AVC.exe /SILENT /COMPONENTS"icons,ext\reg\shellhere,assoc,assoc_sh" /dir%1\VC...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...