机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库
概要
机器学习模型的“黑箱”困境
机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢?
作为一名Python爱好者,我们自然希望能够了解模型背后的原理。好消息是,SHAP和LIME这两个库能帮助我们!它们可以帮助我们揭示模型的内部结构,让我们能够更好地理解和优化模型。
一:SHAP值到底是什么?
SHAP(SHapley Additive exPlanations)是一种解释机器学习模型的方法,它基于博弈论中的Shapley值。Shapley值的核心思想是给每个特征分配一个贡献值,用以表示该特征对预测结果的影响程度。
1.1 SHAP值的计算方法
首先,我们需要安装shap库:
!pip install shap
假设我们已经用Scikit-Learn训练好了一个模型model。为了计算SHAP值,我们需要先初始化一个KernelExplainer对象:
import shapexplainer = shap.KernelExplainer(model.predict, X_train)
然后就可以用shap_values方法计算每个特征的SHAP值了:
shap_values = explainer.shap_values(X_test)
这样,我们就得到了每个特征对每个预测样本的贡献值。
1.2 用SHAP值分析模型
SHAP库提供了一些可视化方法,帮助我们更直观地分析模型。例如,我们可以用summary_plot方法来绘制SHAP值的总体情况:
shap.summary_plot(shap_values, X_test)
这张图展示了每个特征的SHAP值随着特征值的变化。从图中我们可以看出,不同特征对预测结果的影响程度有很大差异。
二:LIME如何揭示模型局部特性?
LIME(Local Interpretable Model-Agnostic Explanations)则是另一种解释机器学习模型的方法。它的主要思想是在每个预测样本周围建立一个简单的线性模型,从而帮助我们理解模型在局部的行为。
2.1 使用LIME分析模型
首先,我们需要安装lime库:
!pip install lime
假设我们已经用Scikit-Learn训练好了一个模型model。为了使用LIME,我们需要先创建一个LimeTabularExplainer对象:
from lime.lime_tabular import LimeTabularExplainerexplainer = LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['prediction'], verbose=True)
然后我们可以为某个预测样本生成LIME解释:
i = 42 # 随便选一个样本
exp = explainer.explain_instance(X_test.values[i], model.predict_proba)
最后,我们可以用show_in_notebook方法将LIME解释可视化:
exp.show_in_notebook()
这样我们就可以看到一个简单的线性模型,展示了各个特征对预测结果的贡献。
2.2 LIME的局限性
虽然LIME能够帮助我们理解模型在局部的行为,但它也有一些局限性。例如,LIME依赖于一个简单的线性模型,可能无法很好地捕捉到复杂模型的特性。
三:SHAP与LIME的比较
既然我们已经了解了SHAP和LIME这两个库,那么自然会产生一个疑问:它们之间有什么区别,该如何选择呢?
3.1 二者的异同
首先总结一下它们的相似之处:
-
都能帮助我们解释机器学习模型;
-
都可以为每个特征分配一个贡献值;
-
都支持Scikit-Learn中的模型。
不同之处:
-
SHAP基于Shapley值,具有一定的理论基础;
-
LIME关注局部特性,用简单模型解释复杂模型;
-
SHAP可以捕捉到特征间的相互作用,而LIME不行。
3.2 如何选择?
虽然SHAP和LIME都有各自的优缺点,但总体来说,SHAP更具有理论基础,而且能捕捉到特征间的相互作用。因此,在大多数情况下,我们推荐使用SHAP库。但如果您对局部特性更感兴趣,那么LIME也是一个不错的选择。
技术总结
通过这些方法,我们可以更好地理解模型的内部结构,进而优化模型,提高预测准确率。最后,欢迎在评论区留言分享你的见解,告诉我们你是如何运用这些知识解决实际问题的!
相关文章:
机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库
概要 机器学习模型的“黑箱”困境 机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢&a…...
Go 语言进阶与依赖管理 | 青训营
Powered by:NEFU AB-IN 文章目录 Go 语言进阶与依赖管理 | 青训营 语言进阶依赖管理测试 Go 语言进阶与依赖管理 | 青训营 GO语言工程实践课后作业:实现思路、代码以及路径记录 语言进阶 Go可以充分发挥多核优势,高效运行 Goroutine是Go语言中的协程…...
hyperf 十三 视图
教程:Hyperf composer地址:hyperf/view - Packagist 本次测试使用twig twig composedr地址:twig/twig - Packagist twig 文档地址:Home - Twig - The flexible, fast, and secure PHP template engine 一、安装 composer re…...
请你说说前端图形图像的框架
前端图形图像方面有许多强大的框架和库,使得开发者能够更容易地创建丰富的视觉效果和复杂的图形应用。下面列举了一些主要的框架和库: 1. Three.js Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了…...
C++数据结构学习——栈
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、栈二、C语言实现1.声明代码2.实现增删查改代码3.测试代码 总结 前言 栈(Stack)是计算机科学中一种常见的数据结构,它是…...
【C++笔记】C++之类与对象(下)
【C笔记】C之类与对象(下) 1、再看构造函数1.1、构造函数的初始化列表1.2、C支持单参数的构造函数的隐式类型转换1.3、匿名对象 2、Static成员2.1、为什么要有静态成员变量?2.2、一个类的静态成员变量属于这个类的所有对象2.3、静态成员函数 3、友元3.1、…...
管理类联考——英语——实战篇——大作文——图表——动态图表——整体效果
动态图表模板 What is clearly presented in the above 图表类型 is that dramatic changes have taken place in 主题词1 from 年份1 to 年份2.During the period, there was a marked jump from 数字1 to 数字2 in 事物1,while that of 事物2 declined significantly from 数…...
threejs纹理加载三(视频加载)
threejs中除了能把图片作为纹理进行几何体贴图以外,还可以把视频作为纹理进行贴图设置。纹理的类型有很多,我们可以用不同的加载器来加载,而对于视频作为纹理,我们需要用到今天的主角:VideoTexture。我们先看效果&…...
VUE笔记(三)vue的语法
一、计算属性 1、计算属性的概念 计算属性是依赖于源数据(data或者属性中的数据),在元数据的基础上进行逻辑运算后得到的新的数据,计算属性要依赖于源数据,源数据数据变化计算属性也会变化 2、计算属性的语法 在vue2中使用computed这个选…...
探讨uniapp的路由与页面生命周期问题
1 首先我们引入页面路由 2 页面生命周期函数 onLoad() {console.log(页面加载)},onShow() {console.log(页面显示)},onReady(){console.log(页面初次显示)},onHide() {console.log(页面隐藏)},onUnload() {console.log(页面卸载)},onBackPress(){console.log(页面返回)}3 页面…...
咸鱼之王俱乐部网站开发
我的俱乐部 最新兑换码 *注意区分大小写,中间不能有空格! APP666 HAPPY666 QQ888 QQXY888 vip666 VIP666 XY888 app666 bdvip666 douyin666 douyin777 douyin888 happy666 huhushengwei888 taptap666 周活动 宝箱周 宝箱说明 1.木质宝箱开启1个…...
Electron+Vue3+TS 打包exe客户端
Electron Vue3 TS 实战 - 掘金 如果报错loaderContext.getOptions is not a function ts-loader版本不一致导致的问题。 解决方案:npm install ts-loader8.0.0 --save...
vue3范围选择组件封装
个人项目地址: SubTopH前端开发个人站 (自己开发的前端功能和UI组件,一些有趣的小功能,感兴趣的伙伴可以访问,欢迎提出更好的想法,私信沟通,网站属于静态页面) SubTopH前端开发个人站…...
能被整除的数(容斥原理)
思路: (1)需求:求对于1~n中至少能被p1~pm至少1个整除的数的个数,由于都是质数,彼此互质,不需要进行质因子分解,根据容斥原理, res n/p1 n/p2 ... n/pm - n /(p1p2) -…...
Modbus转Profinet网关与流量变送器兼容转ModbusTCP协议博图配置
首先,我们需要明确电磁流量计的通信协议是Modbus,而西门子1200PLC的通信协议是Profinet。这两种协议在功能和特性上存在一定的差异,因此需要使用兴达易控Modbus转Profinet网关设备进行转换。兴达易控的XD-MDPN100是Profinet转ModbusTCP的网关…...
HLS实现CORDIC算法计算正余弦并上板验证
硬件:ZYNQ7010 软件:MATLAB 2019b、Vivado 2017.4、HLS 2017.4、System Generator 2017.4 1、CORDIC算法计算正余弦 CORDIC算法详细分析网上有很多资料,它的原理是用一系列旋转去逼近目标角度,这一系列旋转的角度为 θ a r c t…...
高阶数据结构并查集
目录: 并查集的概念代码实现 LeetCode例题 并查集的概念 将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中反复遇到查询某一个元素属于那个集合的运算…...
WSL2连接不了外网怎么办?
某天忽然WLAN变成地球图标,上不了Internet,搞了半天网络适配器,仍然不行。回忆之前做过的操作,曾经运行过ZoogVPN,试着启动并连接,然后退出,WLAN神奇地恢复了连接,可以上Internet了。…...
【C/C++】探索内存对齐的奥秘与优势
目录 一,前言 二,什么是内存对齐? 三,内存对齐的原理 四,内存对齐的优势 五,如何实现内存对齐?(看这节就行) 1.使用 #pragma pack 来实现内存对齐的示例 七&#…...
leetcode分类刷题:滑动窗口(二、重复元素类型)
1、连续子数组、连续子串问题通常需要滑动窗口来求解,本篇文章对应的“二、重复元素类型”在此基础上对连续子数组、连续子串中重复元素个数、种类进行考察,此时,需要使用和维护哈希表进行左右指针的移动,因此这类题目对应的解法为…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
