Day 84:网络结构与参数
单层数据
package dl;/*** One layer, support all four layer types. The code mainly initializes, gets,* and sets variables. Essentially no algorithm is implemented.*/
public class CnnLayer {/*** The type of the layer.*/LayerTypeEnum type;/*** The number of out map.*/int outMapNum;/*** The map size.*/Size mapSize;/*** The kernel size.*/Size kernelSize;/*** The scale size.*/Size scaleSize;/*** The index of the class (label) attribute.*/int classNum = -1;/*** Kernel. Dimensions: [front map][out map][width][height].*/private double[][][][] kernel;/*** Bias. The length is outMapNum.*/private double[] bias;/*** Out maps. Dimensions:* [batchSize][outMapNum][mapSize.width][mapSize.height].*/private double[][][][] outMaps;/*** Errors.*/private double[][][][] errors;/*** For batch processing.*/private static int recordInBatch = 0;/************************** The first constructor.** @param paraNum* When the type is CONVOLUTION, it is the out map number. when* the type is OUTPUT, it is the class number.* @param paraSize* When the type is INPUT, it is the map size; when the type is* CONVOLUTION, it is the kernel size; when the type is SAMPLING,* it is the scale size.************************/public CnnLayer(LayerTypeEnum paraType, int paraNum, Size paraSize) {type = paraType;switch (type) {case INPUT:outMapNum = 1;mapSize = paraSize; // No deep copy.break;case CONVOLUTION:outMapNum = paraNum;kernelSize = paraSize;break;case SAMPLING:scaleSize = paraSize;break;case OUTPUT:classNum = paraNum;mapSize = new Size(1, 1);outMapNum = classNum;break;default:System.out.println("Internal error occurred in AbstractLayer.java constructor.");}// Of switch}// Of the first constructor/************************** Initialize the kernel.** @param paraNum* When the type is CONVOLUTION, it is the out map number. when************************/public void initKernel(int paraFrontMapNum) {kernel = new double[paraFrontMapNum][outMapNum][][];for (int i = 0; i < paraFrontMapNum; i++) {for (int j = 0; j < outMapNum; j++) {kernel[i][j] = MathUtils.randomMatrix(kernelSize.width, kernelSize.height, true);} // Of for j} // Of for i}// Of initKernel/************************** Initialize the output kernel. The code is revised to invoke* initKernel(int).************************/public void initOutputKernel(int paraFrontMapNum, Size paraSize) {kernelSize = paraSize;initKernel(paraFrontMapNum);}// Of initOutputKernel/************************** Initialize the bias. No parameter. "int frontMapNum" is claimed however* not used.************************/public void initBias() {bias = MathUtils.randomArray(outMapNum);}// Of initBias/************************** Initialize the errors.** @param paraBatchSize* The batch size.************************/public void initErrors(int paraBatchSize) {errors = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];}// Of initErrors/************************** Initialize out maps.** @param paraBatchSize* The batch size.************************/public void initOutMaps(int paraBatchSize) {outMaps = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];}// Of initOutMaps/************************** Prepare for a new batch.************************/public static void prepareForNewBatch() {recordInBatch = 0;}// Of prepareForNewBatch/************************** Prepare for a new record.************************/public static void prepareForNewRecord() {recordInBatch++;}// Of prepareForNewRecord/************************** Set one value of outMaps.************************/public void setMapValue(int paraMapNo, int paraX, int paraY, double paraValue) {outMaps[recordInBatch][paraMapNo][paraX][paraY] = paraValue;}// Of setMapValue/************************** Set values of the whole map.************************/public void setMapValue(int paraMapNo, double[][] paraOutMatrix) {outMaps[recordInBatch][paraMapNo] = paraOutMatrix;}// Of setMapValue/************************** Getter.************************/public Size getMapSize() {return mapSize;}// Of getMapSize/************************** Setter.************************/public void setMapSize(Size paraMapSize) {mapSize = paraMapSize;}// Of setMapSize/************************** Getter.************************/public LayerTypeEnum getType() {return type;}// Of getType/************************** Getter.************************/public int getOutMapNum() {return outMapNum;}// Of getOutMapNum/************************** Setter.************************/public void setOutMapNum(int paraOutMapNum) {outMapNum = paraOutMapNum;}// Of setOutMapNum/************************** Getter.************************/public Size getKernelSize() {return kernelSize;}// Of getKernelSize/************************** Getter.************************/public Size getScaleSize() {return scaleSize;}// Of getScaleSize/************************** Getter.************************/public double[][] getMap(int paraIndex) {return outMaps[recordInBatch][paraIndex];}// Of getMap/************************** Getter.************************/public double[][] getKernel(int paraFrontMap, int paraOutMap) {return kernel[paraFrontMap][paraOutMap];}// Of getKernel/************************** Setter. Set one error.************************/public void setError(int paraMapNo, int paraMapX, int paraMapY, double paraValue) {errors[recordInBatch][paraMapNo][paraMapX][paraMapY] = paraValue;}// Of setError/************************** Setter. Set one error matrix.************************/public void setError(int paraMapNo, double[][] paraMatrix) {errors[recordInBatch][paraMapNo] = paraMatrix;}// Of setError/************************** Getter. Get one error matrix.************************/public double[][] getError(int paraMapNo) {return errors[recordInBatch][paraMapNo];}// Of getError/************************** Getter. Get the whole error tensor.************************/public double[][][][] getErrors() {return errors;}// Of getErrors/************************** Setter. Set one kernel.************************/public void setKernel(int paraLastMapNo, int paraMapNo, double[][] paraKernel) {kernel[paraLastMapNo][paraMapNo] = paraKernel;}// Of setKernel/************************** Getter.************************/public double getBias(int paraMapNo) {return bias[paraMapNo];}// Of getBias/************************** Setter.************************/public void setBias(int paraMapNo, double paraValue) {bias[paraMapNo] = paraValue;}// Of setBias/************************** Getter.************************/public double[][][][] getMaps() {return outMaps;}// Of getMaps/************************** Getter.************************/public double[][] getError(int paraRecordId, int paraMapNo) {return errors[paraRecordId][paraMapNo];}// Of getError/************************** Getter.************************/public double[][] getMap(int paraRecordId, int paraMapNo) {return outMaps[paraRecordId][paraMapNo];}// Of getMap/************************** Getter.************************/public int getClassNum() {return classNum;}// Of getClassNum/************************** Getter. Get the whole kernel tensor.************************/public double[][][][] getKernel() {return kernel;} // Of getKernel
}// Of class CnnLayer
多层管理
package dl;import java.util.ArrayList;
import java.util.List;/*** CnnLayer builder.*/
public class LayerBuilder {/*** Layers.*/private List<CnnLayer> layers;/************************** The first constructor.************************/public LayerBuilder() {layers = new ArrayList<CnnLayer>();}// Of the first constructor/************************** The second constructor.************************/public LayerBuilder(CnnLayer paraLayer) {this();layers.add(paraLayer);}// Of the second constructor/************************** Add a layer.** @param paraLayer* The new layer.************************/public void addLayer(CnnLayer paraLayer) {layers.add(paraLayer);}// Of addLayer/************************** Get the specified layer.** @param paraIndex* The index of the layer.************************/public CnnLayer getLayer(int paraIndex) throws RuntimeException{if (paraIndex >= layers.size()) {throw new RuntimeException("CnnLayer " + paraIndex + " is out of range: "+ layers.size() + ".");}//Of ifreturn layers.get(paraIndex);}//Of getLayer/************************** Get the output layer.************************/public CnnLayer getOutputLayer() {return layers.get(layers.size() - 1);}//Of getOutputLayer/************************** Get the number of layers.************************/public int getNumLayers() {return layers.size();}//Of getNumLayers
}// Of class LayerBuilder
相关文章:
Day 84:网络结构与参数
单层数据 package dl;/*** One layer, support all four layer types. The code mainly initializes, gets,* and sets variables. Essentially no algorithm is implemented.*/ public class CnnLayer {/*** The type of the layer.*/LayerTypeEnum type;/*** The number of …...

vue2.6及以下版本导入 TDesign UI组件库
TDesign 官方文档:https://tdesign.tencent.com/vue/components/button 我们先打开一个普通的vue项目 然后 如果你是 vue 2.6 或者 低于 2.6 在终端执行 npm i tdesign-vue如果你是 2.7 或者更高 执行 npm i tdesign-vuenaruto这里 我们 以 2.6为例 因为大部分人 用vue2 都是…...

VR/AR/眼镜投屏充电方案(LDR6020)
VR眼镜即VR头显,也称虚拟现实头戴式显示设备,随着元宇宙概念的传播,VR眼镜的热度一直只增不减,但是头戴设备的续航一直被人诟病,如果增大电池就会让头显变得笨重影响体验,所以目前最佳的解决方案还是使用VR…...

区分什么是Java内存模型(JMM)和 JVM运行时数据区
文章目录 一、概念区分1、什么是内存模型?什么是(内存区域)运行时数据区?2、为什么要有Java内存模型?2.1、硬件的效率与一致性2.2、 CPU和缓存的一致性2.2.1、为什么需要CPU cache?2.2.2、三级缓存…...

Flask狼书笔记 | 04_表单
文章目录 4 表单4.1 HTML表单4.2 使用Flask-WTF4.3 处理表单数据4.4 表单进阶实践小记 4 表单 表单是和用户交互最常见的方式之一,本章涉及的Python包由WTForms、Flask-WTF、Flask-CKEditor。(p104) 4.1 HTML表单 通过<form>标签创建…...

RabbitMQ+springboot用延迟插件实现延迟消息的发送
延迟队列:其实就是死信队列中消息过期的特殊情况 延迟队列应用场景: 可以用死信队列来实现,不过死信队列要等上一个消息消费成功,才会进行下一个消息的消费,这时候就需要用到延迟插件了,不过要线在docker上…...

多线程和并发(1)—等待/通知模型
一、进程通信和进程同步 1.进程通信的方法 同一台计算机的进程通信称为IPC(Inter-process communication),不同计 算机之间的进程通信被称为 RPC(Romote process communication),需要通过网络,并遵守共同的协议。**进…...

浏览器的事件循环
其实在我们电脑的操作系统中,每一个运行的程序都会由自己的进程(可能是一个,也可能有多个),浏览器就是一个程序,它的运行在操作系统中,拥有一组自己的进程(主进程,渲染进…...

跳跃游戏 II【贪心算法】
跳跃游戏 II class Solution {public int jump(int[] nums) {int cur 0;//当前最大覆盖路径int next 0;//下一步的最大覆盖路径int res 0;//存放结果,到达终点时最少的跳跃步数for (int i 0; i < nums.length; i) {//遍历数组,以给出数组以一个…...

promise
promise 属于事件循环的微任务,具体详见:事件循环 Promise 语法: const p1 new Promise((reslove,reject)>{console.log(2);reslove(1) }).then((data)>{console.log(3);console.log(data) }).catch((data)>{console.log(3); }) promise.th…...
前端面试:【网络协议与性能优化】HTTP/HTTPS、TCP/IP和WebSocket
嗨,亲爱的Web开发者!在构建现代Web应用时,了解网络协议是优化性能和确保安全性的关键。本文将深入探讨HTTP/HTTPS、TCP/IP和WebSocket这三个网络协议,帮助你理解它们的作用以及如何优化Web应用的性能。 1. HTTP/HTTPS协议…...

设计模式之工厂模式(万字长文)
文章目录 概述工厂模式的优点包括工厂模式有几种主要的变体看一个具体需求使用传统的方式来完成传统的方式的优缺点 简单工厂模式基本介绍使用简单工厂模式简单工厂模式的优缺点优点:缺点: 工厂方法模式看一个新的需求思路 1思路 2工厂方法模式介绍工厂方…...

CNN 02(CNN原理)
一、卷积神经网络(CNN)原理 1.1 卷积神经网络的组成 定义 卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷积神经网络在图像等方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他浅层或深度神经…...

Android View动画整理
View 动画相关内容可参考官网 动画资源 此前也有写 View 动画相关的内容,但都只是记录代码,没有特别分析。以此篇作为汇总、整理、分析。 Android View 动画有4中,分别是 平移动画 TranslateAnimation缩放动画 ScaleAnimation旋转动画 Rot…...

阿里云架构
负载均衡slb 分类以及应用场景 负载均衡slb clb 传统的负载均衡(原slb) 支持4层和7层(仅支持对uri(location),域名进行转发) 一般使用slb(clb) alb 应用负载均衡 只支持7层,整合了nginx负载均衡的各种功能,可以根据用户请求头,响应头 如果需要详细处理用户请求(浏…...

【C语言】操作符大全(保姆级介绍)
🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将详细介绍各种操作符的功能。 目录: 📘 前言① 算术操作符②移位操作符③位操作符④赋值操…...

ruoyi-cloud部署
默认你已经安装mysql,nacos,seata,sentinel等(没有的可以先找教程安装) 1、下载源码:git clone https://gitee.com/zhangmrit/ruoyi-cloud 2、项目依赖导入,选择自己的maven环境等,创…...

Vue3(开发h5适配)
在开发移动端的时候需要适配各种机型,有大的,有小的,我们需要一套代码,在不同的分辨率适应各种机型。 因此我们需要设置meta标签 <meta name"viewport" content"widthdevice-width, initial-scale1.0">…...
图的存储:邻接矩阵法
1.邻接矩阵的实现 邻接矩阵的定义:在无向图和有向图中,使用二维数组表示各个顶点的相邻情况:1代表相邻,0表示不相邻。 代码实现: #define MaxVertexNum 100//顶点数目的最大值 typedef struct {char Vex [MaxVertexN…...
如何优雅的使用Git?
第一部分:Git的基本概念和初始设置 Git是一个分布式版本控制系统,它允许多人共同工作,同时跟踪和管理项目的版本历史。使用Git,您可以恢复旧版本、创建新分支进行实验,并与其他开发者进行协作,而不会影响主…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...