当前位置: 首页 > news >正文

Day 84:网络结构与参数

单层数据

package dl;/*** One layer, support all four layer types. The code mainly initializes, gets,* and sets variables. Essentially no algorithm is implemented.*/
public class CnnLayer {/*** The type of the layer.*/LayerTypeEnum type;/*** The number of out map.*/int outMapNum;/*** The map size.*/Size mapSize;/*** The kernel size.*/Size kernelSize;/*** The scale size.*/Size scaleSize;/*** The index of the class (label) attribute.*/int classNum = -1;/*** Kernel. Dimensions: [front map][out map][width][height].*/private double[][][][] kernel;/*** Bias. The length is outMapNum.*/private double[] bias;/*** Out maps. Dimensions:* [batchSize][outMapNum][mapSize.width][mapSize.height].*/private double[][][][] outMaps;/*** Errors.*/private double[][][][] errors;/*** For batch processing.*/private static int recordInBatch = 0;/************************** The first constructor.** @param paraNum*            When the type is CONVOLUTION, it is the out map number. when*            the type is OUTPUT, it is the class number.* @param paraSize*            When the type is INPUT, it is the map size; when the type is*            CONVOLUTION, it is the kernel size; when the type is SAMPLING,*            it is the scale size.************************/public CnnLayer(LayerTypeEnum paraType, int paraNum, Size paraSize) {type = paraType;switch (type) {case INPUT:outMapNum = 1;mapSize = paraSize; // No deep copy.break;case CONVOLUTION:outMapNum = paraNum;kernelSize = paraSize;break;case SAMPLING:scaleSize = paraSize;break;case OUTPUT:classNum = paraNum;mapSize = new Size(1, 1);outMapNum = classNum;break;default:System.out.println("Internal error occurred in AbstractLayer.java constructor.");}// Of switch}// Of the first constructor/************************** Initialize the kernel.** @param paraNum*            When the type is CONVOLUTION, it is the out map number. when************************/public void initKernel(int paraFrontMapNum) {kernel = new double[paraFrontMapNum][outMapNum][][];for (int i = 0; i < paraFrontMapNum; i++) {for (int j = 0; j < outMapNum; j++) {kernel[i][j] = MathUtils.randomMatrix(kernelSize.width, kernelSize.height, true);} // Of for j} // Of for i}// Of initKernel/************************** Initialize the output kernel. The code is revised to invoke* initKernel(int).************************/public void initOutputKernel(int paraFrontMapNum, Size paraSize) {kernelSize = paraSize;initKernel(paraFrontMapNum);}// Of initOutputKernel/************************** Initialize the bias. No parameter. "int frontMapNum" is claimed however* not used.************************/public void initBias() {bias = MathUtils.randomArray(outMapNum);}// Of initBias/************************** Initialize the errors.** @param paraBatchSize*            The batch size.************************/public void initErrors(int paraBatchSize) {errors = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];}// Of initErrors/************************** Initialize out maps.** @param paraBatchSize*            The batch size.************************/public void initOutMaps(int paraBatchSize) {outMaps = new double[paraBatchSize][outMapNum][mapSize.width][mapSize.height];}// Of initOutMaps/************************** Prepare for a new batch.************************/public static void prepareForNewBatch() {recordInBatch = 0;}// Of prepareForNewBatch/************************** Prepare for a new record.************************/public static void prepareForNewRecord() {recordInBatch++;}// Of prepareForNewRecord/************************** Set one value of outMaps.************************/public void setMapValue(int paraMapNo, int paraX, int paraY, double paraValue) {outMaps[recordInBatch][paraMapNo][paraX][paraY] = paraValue;}// Of setMapValue/************************** Set values of the whole map.************************/public void setMapValue(int paraMapNo, double[][] paraOutMatrix) {outMaps[recordInBatch][paraMapNo] = paraOutMatrix;}// Of setMapValue/************************** Getter.************************/public Size getMapSize() {return mapSize;}// Of getMapSize/************************** Setter.************************/public void setMapSize(Size paraMapSize) {mapSize = paraMapSize;}// Of setMapSize/************************** Getter.************************/public LayerTypeEnum getType() {return type;}// Of getType/************************** Getter.************************/public int getOutMapNum() {return outMapNum;}// Of getOutMapNum/************************** Setter.************************/public void setOutMapNum(int paraOutMapNum) {outMapNum = paraOutMapNum;}// Of setOutMapNum/************************** Getter.************************/public Size getKernelSize() {return kernelSize;}// Of getKernelSize/************************** Getter.************************/public Size getScaleSize() {return scaleSize;}// Of getScaleSize/************************** Getter.************************/public double[][] getMap(int paraIndex) {return outMaps[recordInBatch][paraIndex];}// Of getMap/************************** Getter.************************/public double[][] getKernel(int paraFrontMap, int paraOutMap) {return kernel[paraFrontMap][paraOutMap];}// Of getKernel/************************** Setter. Set one error.************************/public void setError(int paraMapNo, int paraMapX, int paraMapY, double paraValue) {errors[recordInBatch][paraMapNo][paraMapX][paraMapY] = paraValue;}// Of setError/************************** Setter. Set one error matrix.************************/public void setError(int paraMapNo, double[][] paraMatrix) {errors[recordInBatch][paraMapNo] = paraMatrix;}// Of setError/************************** Getter. Get one error matrix.************************/public double[][] getError(int paraMapNo) {return errors[recordInBatch][paraMapNo];}// Of getError/************************** Getter. Get the whole error tensor.************************/public double[][][][] getErrors() {return errors;}// Of getErrors/************************** Setter. Set one kernel.************************/public void setKernel(int paraLastMapNo, int paraMapNo, double[][] paraKernel) {kernel[paraLastMapNo][paraMapNo] = paraKernel;}// Of setKernel/************************** Getter.************************/public double getBias(int paraMapNo) {return bias[paraMapNo];}// Of getBias/************************** Setter.************************/public void setBias(int paraMapNo, double paraValue) {bias[paraMapNo] = paraValue;}// Of setBias/************************** Getter.************************/public double[][][][] getMaps() {return outMaps;}// Of getMaps/************************** Getter.************************/public double[][] getError(int paraRecordId, int paraMapNo) {return errors[paraRecordId][paraMapNo];}// Of getError/************************** Getter.************************/public double[][] getMap(int paraRecordId, int paraMapNo) {return outMaps[paraRecordId][paraMapNo];}// Of getMap/************************** Getter.************************/public int getClassNum() {return classNum;}// Of getClassNum/************************** Getter. Get the whole kernel tensor.************************/public double[][][][] getKernel() {return kernel;} // Of getKernel
}// Of class CnnLayer

多层管理

package dl;import java.util.ArrayList;
import java.util.List;/*** CnnLayer builder.*/
public class LayerBuilder {/*** Layers.*/private List<CnnLayer> layers;/************************** The first constructor.************************/public LayerBuilder() {layers = new ArrayList<CnnLayer>();}// Of the first constructor/************************** The second constructor.************************/public LayerBuilder(CnnLayer paraLayer) {this();layers.add(paraLayer);}// Of the second constructor/************************** Add a layer.** @param paraLayer*            The new layer.************************/public void addLayer(CnnLayer paraLayer) {layers.add(paraLayer);}// Of addLayer/************************** Get the specified layer.** @param paraIndex*            The index of the layer.************************/public CnnLayer getLayer(int paraIndex) throws RuntimeException{if (paraIndex >= layers.size()) {throw new RuntimeException("CnnLayer " + paraIndex + " is out of range: "+ layers.size() + ".");}//Of ifreturn layers.get(paraIndex);}//Of getLayer/************************** Get the output layer.************************/public CnnLayer getOutputLayer() {return layers.get(layers.size() - 1);}//Of getOutputLayer/************************** Get the number of layers.************************/public int getNumLayers() {return layers.size();}//Of getNumLayers
}// Of class LayerBuilder

相关文章:

Day 84:网络结构与参数

单层数据 package dl;/*** One layer, support all four layer types. The code mainly initializes, gets,* and sets variables. Essentially no algorithm is implemented.*/ public class CnnLayer {/*** The type of the layer.*/LayerTypeEnum type;/*** The number of …...

vue2.6及以下版本导入 TDesign UI组件库

TDesign 官方文档:https://tdesign.tencent.com/vue/components/button 我们先打开一个普通的vue项目 然后 如果你是 vue 2.6 或者 低于 2.6 在终端执行 npm i tdesign-vue如果你是 2.7 或者更高 执行 npm i tdesign-vuenaruto这里 我们 以 2.6为例 因为大部分人 用vue2 都是…...

VR/AR/眼镜投屏充电方案(LDR6020)

VR眼镜即VR头显&#xff0c;也称虚拟现实头戴式显示设备&#xff0c;随着元宇宙概念的传播&#xff0c;VR眼镜的热度一直只增不减&#xff0c;但是头戴设备的续航一直被人诟病&#xff0c;如果增大电池就会让头显变得笨重影响体验&#xff0c;所以目前最佳的解决方案还是使用VR…...

区分什么是Java内存模型(JMM)和 JVM运行时数据区

文章目录 一、概念区分1、什么是内存模型&#xff1f;什么是&#xff08;内存区域&#xff09;运行时数据区&#xff1f;2、为什么要有Java内存模型&#xff1f;2.1、硬件的效率与一致性2.2、 CPU和缓存的一致性2.2.1、为什么需要CPU cache&#xff1f;2.2.2、三级缓存&#xf…...

Flask狼书笔记 | 04_表单

文章目录 4 表单4.1 HTML表单4.2 使用Flask-WTF4.3 处理表单数据4.4 表单进阶实践小记 4 表单 表单是和用户交互最常见的方式之一&#xff0c;本章涉及的Python包由WTForms、Flask-WTF、Flask-CKEditor。&#xff08;p104&#xff09; 4.1 HTML表单 通过<form>标签创建…...

RabbitMQ+springboot用延迟插件实现延迟消息的发送

延迟队列&#xff1a;其实就是死信队列中消息过期的特殊情况 延迟队列应用场景&#xff1a; 可以用死信队列来实现&#xff0c;不过死信队列要等上一个消息消费成功&#xff0c;才会进行下一个消息的消费&#xff0c;这时候就需要用到延迟插件了&#xff0c;不过要线在docker上…...

多线程和并发(1)—等待/通知模型

一、进程通信和进程同步 1.进程通信的方法 同一台计算机的进程通信称为IPC&#xff08;Inter-process communication&#xff09;&#xff0c;不同计 算机之间的进程通信被称为 RPC(Romote process communication)&#xff0c;需要通过网络&#xff0c;并遵守共同的协议。**进…...

浏览器的事件循环

其实在我们电脑的操作系统中&#xff0c;每一个运行的程序都会由自己的进程&#xff08;可能是一个&#xff0c;也可能有多个&#xff09;&#xff0c;浏览器就是一个程序&#xff0c;它的运行在操作系统中&#xff0c;拥有一组自己的进程&#xff08;主进程&#xff0c;渲染进…...

跳跃游戏 II【贪心算法】

跳跃游戏 II class Solution {public int jump(int[] nums) {int cur 0;//当前最大覆盖路径int next 0;//下一步的最大覆盖路径int res 0;//存放结果&#xff0c;到达终点时最少的跳跃步数for (int i 0; i < nums.length; i) {//遍历数组&#xff0c;以给出数组以一个…...

promise

promise 属于事件循环的微任务&#xff0c;具体详见&#xff1a;事件循环 Promise 语法: const p1 new Promise((reslove,reject)>{console.log(2);reslove(1) }).then((data)>{console.log(3);console.log(data) }).catch((data)>{console.log(3); }) promise.th…...

前端面试:【网络协议与性能优化】HTTP/HTTPS、TCP/IP和WebSocket

嗨&#xff0c;亲爱的Web开发者&#xff01;在构建现代Web应用时&#xff0c;了解网络协议是优化性能和确保安全性的关键。本文将深入探讨HTTP/HTTPS、TCP/IP和WebSocket这三个网络协议&#xff0c;帮助你理解它们的作用以及如何优化Web应用的性能。 1. HTTP/HTTPS协议&#xf…...

设计模式之工厂模式(万字长文)

文章目录 概述工厂模式的优点包括工厂模式有几种主要的变体看一个具体需求使用传统的方式来完成传统的方式的优缺点 简单工厂模式基本介绍使用简单工厂模式简单工厂模式的优缺点优点&#xff1a;缺点&#xff1a; 工厂方法模式看一个新的需求思路 1思路 2工厂方法模式介绍工厂方…...

CNN 02(CNN原理)

一、卷积神经网络(CNN)原理 1.1 卷积神经网络的组成 定义 卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比&#xff0c;卷积神经网络在图像等方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他浅层或深度神经…...

Android View动画整理

View 动画相关内容可参考官网 动画资源 此前也有写 View 动画相关的内容&#xff0c;但都只是记录代码&#xff0c;没有特别分析。以此篇作为汇总、整理、分析。 Android View 动画有4中&#xff0c;分别是 平移动画 TranslateAnimation缩放动画 ScaleAnimation旋转动画 Rot…...

阿里云架构

负载均衡slb 分类以及应用场景 负载均衡slb clb 传统的负载均衡(原slb) 支持4层和7层(仅支持对uri(location),域名进行转发) 一般使用slb(clb) alb 应用负载均衡 只支持7层,整合了nginx负载均衡的各种功能,可以根据用户请求头,响应头 如果需要详细处理用户请求(浏…...

【C语言】操作符大全(保姆级介绍)

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;C语言 &#x1f525;该篇将详细介绍各种操作符的功能。 目录&#xff1a; &#x1f4d8; 前言① 算术操作符②移位操作符③位操作符④赋值操…...

ruoyi-cloud部署

默认你已经安装mysql&#xff0c;nacos&#xff0c;seata&#xff0c;sentinel等&#xff08;没有的可以先找教程安装&#xff09; 1、下载源码&#xff1a;git clone https://gitee.com/zhangmrit/ruoyi-cloud 2、项目依赖导入&#xff0c;选择自己的maven环境等&#xff0c;创…...

Vue3(开发h5适配)

在开发移动端的时候需要适配各种机型&#xff0c;有大的&#xff0c;有小的&#xff0c;我们需要一套代码&#xff0c;在不同的分辨率适应各种机型。 因此我们需要设置meta标签 <meta name"viewport" content"widthdevice-width, initial-scale1.0">…...

图的存储:邻接矩阵法

1.邻接矩阵的实现 邻接矩阵的定义&#xff1a;在无向图和有向图中&#xff0c;使用二维数组表示各个顶点的相邻情况&#xff1a;1代表相邻&#xff0c;0表示不相邻。 代码实现&#xff1a; #define MaxVertexNum 100//顶点数目的最大值 typedef struct {char Vex [MaxVertexN…...

如何优雅的使用Git?

第一部分&#xff1a;Git的基本概念和初始设置 Git是一个分布式版本控制系统&#xff0c;它允许多人共同工作&#xff0c;同时跟踪和管理项目的版本历史。使用Git&#xff0c;您可以恢复旧版本、创建新分支进行实验&#xff0c;并与其他开发者进行协作&#xff0c;而不会影响主…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...