【深度学习】实验03 特征处理
文章目录
- 特征处理
- 标准化
- 归一化
- 正则化
特征处理
标准化
# 导入标准化库
from sklearn.preprocessing import StandardScalerfrom matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# 随机生成0到100的整数,100行2列
data = np.random.randint(0, 100, (100, 2))
data
array([[ 7, 84],
[43, 81],
[22, 84],
[ 7, 61],
[51, 74],
[95, 94],
[80, 92],
[58, 35],
[88, 15],
[61, 42],
[75, 95],
[87, 64],
[18, 77],
[13, 60],
[18, 51],
[61, 12],
[32, 11],
[ 6, 77],
[85, 44],
[87, 10],
[84, 10],
[ 1, 28],
[76, 87],
[61, 0],
[ 9, 25],
[83, 75],
[ 7, 60],
[80, 73],
[62, 58],
[71, 84],
[78, 6],
[92, 54],
[92, 50],
[28, 57],
[73, 80],
[97, 86],
[84, 78],
[ 9, 29],
[90, 64],
[ 8, 32],
[98, 62],
[45, 93],
[73, 72],
[97, 11],
[21, 66],
[32, 9],
[65, 59],
[30, 36],
[19, 37],
[75, 43],
[90, 55],
[53, 8],
[73, 25],
[73, 82],
[84, 76],
[49, 97],
[29, 64],
[69, 37],
[72, 90],
[10, 87],
[19, 70],
[49, 53],
[56, 24],
[61, 16],
[58, 23],
[28, 31],
[37, 49],
[67, 25],
[31, 99],
[38, 84],
[55, 53],
[27, 89],
[83, 50],
[73, 86],
[67, 11],
[61, 72],
[17, 88],
[82, 67],
[56, 51],
[18, 59],
[73, 44],
[ 8, 86],
[ 6, 20],
[32, 12],
[15, 4],
[91, 17],
[21, 78],
[67, 63],
[12, 32],
[45, 76],
[41, 29],
[75, 64],
[75, 19],
[ 1, 76],
[17, 18],
[13, 47],
[80, 48],
[88, 76],
[29, 63],
[21, 95]])
# 标准化
ss = StandardScaler()
std_data = ss.fit_transform(data)
std_data
array([[-1.50234381, 1.09430096],
[-0.28120186, 0.98577525],
[-0.99353466, 1.09430096],
[-1.50234381, 0.26227048],
[-0.00983698, 0.73254858],
[ 1.48266985, 1.45605335],
[ 0.97386071, 1.38370287],
[ 0.22760729, -0.67828572],
[ 1.24522559, -1.40179049],
[ 0.32936912, -0.42505905],
[ 0.80425766, 1.49222858],
[ 1.21130498, 0.37079619],
[-1.1292171 , 0.84107429],
[-1.29882015, 0.22609524],
[-1.1292171 , -0.09948191],
[ 0.32936912, -1.5103162 ],
[-0.65432856, -1.54649144],
[-1.53626442, 0.84107429],
[ 1.14346376, -0.35270857],
[ 1.21130498, -1.58266668],
[ 1.10954315, -1.58266668],
[-1.70586747, -0.93151239],
[ 0.83817827, 1.20282668],
[ 0.32936912, -1.94441906],
[-1.43450259, -1.0400381 ],
[ 1.07562254, 0.76872382],
[-1.50234381, 0.22609524],
[ 0.97386071, 0.69637334],
[ 0.36328973, 0.15374476],
[ 0.66857522, 1.09430096],
[ 0.90601949, -1.72736763],
[ 1.38090802, 0.00904381],
[ 1.38090802, -0.13565714],
[-0.790011 , 0.11756952],
[ 0.73641644, 0.94960001],
[ 1.55051107, 1.16665144],
[ 1.10954315, 0.87724953],
[-1.43450259, -0.89533715],
[ 1.3130668 , 0.37079619],
[-1.4684232 , -0.78681143],
[ 1.58443168, 0.29844572],
[-0.21336064, 1.41987811],
[ 0.73641644, 0.6601981 ],
[ 1.55051107, -1.54649144],
[-1.02745527, 0.44314667],
[-0.65432856, -1.61884192],
[ 0.46505156, 0.18992 ],
[-0.72216978, -0.64211048],
[-1.09529649, -0.60593524],
[ 0.80425766, -0.38888381],
[ 1.3130668 , 0.04521905],
[ 0.05800424, -1.65501716],
[ 0.73641644, -1.0400381 ],
[ 0.73641644, 1.02195048],
[ 1.10954315, 0.80489905],
[-0.0776782 , 1.56457906],
[-0.75609039, 0.37079619],
[ 0.600734 , -0.60593524],
[ 0.70249583, 1.31135239],
[-1.40058198, 1.20282668],
[-1.09529649, 0.58784762],
[-0.0776782 , -0.02713143],
[ 0.15976607, -1.07621334],
[ 0.32936912, -1.36561525],
[ 0.22760729, -1.11238858],
[-0.790011 , -0.82298667],
[-0.48472551, -0.17183238],
[ 0.53289278, -1.0400381 ],
[-0.68824917, 1.63692954],
[-0.4508049 , 1.09430096],
[ 0.12584546, -0.02713143],
[-0.82393161, 1.27517715],
[ 1.07562254, -0.13565714],
[ 0.73641644, 1.16665144],
[ 0.53289278, -1.54649144],
[ 0.32936912, 0.6601981 ],
[-1.16313771, 1.23900191],
[ 1.04170193, 0.47932191],
[ 0.15976607, -0.09948191],
[-1.1292171 , 0.18992 ],
[ 0.73641644, -0.35270857],
[-1.4684232 , 1.16665144],
[-1.53626442, -1.2209143 ],
[-0.65432856, -1.5103162 ],
[-1.23097893, -1.79971811],
[ 1.34698741, -1.32944001],
[-1.02745527, 0.87724953],
[ 0.53289278, 0.33462096],
[-1.33274076, -0.78681143],
[-0.21336064, 0.80489905],
[-0.34904307, -0.89533715],
[ 0.80425766, 0.37079619],
[ 0.80425766, -1.25708953],
[-1.70586747, 0.80489905],
[-1.16313771, -1.29326477],
[-1.29882015, -0.24418286],
[ 0.97386071, -0.20800762],
[ 1.24522559, 0.80489905],
[-0.75609039, 0.33462096],
[-1.02745527, 1.49222858]])
# 作图
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])ax1.scatter(data[:, 0], data[:, 1])
ax2.scatter(std_data[:, 0], std_data[:, 1])plt.show()
归一化
# 导入归一化库
from sklearn.preprocessing import MinMaxScaler
import numpy as npdata = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)
data is [[67.74476271]
[10.2077285 ]
[27.34037799]
[24.72236105]
[68.67245127]
[91.11026437]
[51.92345696]
[92.05191865]
[16.9495692 ]
[94.18851495]]
after Min Max [[0.6851214 ]
[0. ]
[0.20400678]
[0.17283278]
[0.69616784]
[0.96334578]
[0.49672943]
[0.97455851]
[0.08027837]
[1. ]]
origin data is [[67.74476271]
[10.2077285 ]
[27.34037799]
[24.72236105]
[68.67245127]
[91.11026437]
[51.92345696]
[92.05191865]
[16.9495692 ]
[94.18851495]]
正则化
# 导入L1正则化库
from sklearn.preprocessing import Normalizer# 导入L2正则化库
from sklearn.preprocessing import normalizeX = [[1, -1, 2],[2, 0, 0],[0, 1, -1]]normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)l2 = normalize(X, norm='l2')
print('l2:', l2)
l1: [[ 0.25 -0.25 0.5 ][ 1. 0. 0. ][ 0. 0.5 -0.5 ]]
l2: [[ 0.40824829 -0.40824829 0.81649658][ 1. 0. 0. ][ 0. 0.70710678 -0.70710678]]
相关文章:

【深度学习】实验03 特征处理
文章目录 特征处理标准化归一化正则化 特征处理 标准化 # 导入标准化库 from sklearn.preprocessing import StandardScalerfrom matplotlib import gridspec import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore&quo…...

基于Dpabi的功能连接
1.预处理 这里预处理用Gretna软件进行,共分为以下几步: (1)DICOM转NIfTI格式 (2)去除前10个时间点(Remove first 10 times points):由于机器刚启动、被试刚躺进去也还需适应环境,导致刚开始扫描的数据很…...

在React项目是如何捕获错误的?
文章目录 react中的错误介绍解决方案后言 react中的错误介绍 错误在我们日常编写代码是非常常见的 举个例子,在react项目中去编写组件内JavaScript代码错误会导致 React 的内部状态被破坏,导致整个应用崩溃,这是不应该出现的现象 作为一个框架…...

基于内存池的 简单高效的数据库 SDK简介
基于内存池的 简单高效的数据库 SDK简介 下载地址: https://gitee.com/tankaishuai/powerful_sdks/tree/master/shm_alloc_db_heap shm_alloc_db_heap 是一个基于内存池实现的简单高效的文件型数据存储引擎,利用它可以轻松地像访问内存块一样读、写、增…...

python实例方法,类方法和静态方法区别
为python中的装饰器 实例方法 实例方法时直接定义在类中的函数,不需要任何修饰。只能通过类的实例化对象来调用。不能通过类名来调用。 类方法 类方法,是类中使用classmethod修饰的函数。类方法在定义的时候需要有表示类对象的参数(一般命名为cls&#…...
Pyecharts教程(四):使用pyecharts绘制3D折线图
Pyecharts教程(四):使用pyecharts绘制3D折线图 作者:安静到无声 个人主页 目录 Pyecharts教程(四):使用pyecharts绘制3D折线图准备工作数据准备绘制3D折线图推荐专栏在这篇文章中,我们将学习如何使用pyecharts库来绘制一个3D折线图。pyecharts是一个用于生成Echarts图表的…...

【stable-diffusion使用扩展+插件和模型资源(下)】
插件模型魔法图片等资源:https://tianfeng.space/1240.html 书接上文:(上) 插件推荐 1.lobe theme lobe theme是一款主题插件,直接可以在扩展安装 界面进行了重新布局,做了一些优化,有兴趣的…...

一文了解SpringBoot中的Aop
目录 1.什么是Aop 2.相关概念 3.相关注解 4.为什么要用Aop 5.Aop使用案例 1.什么是Aop AOP:Aspect Oriented Programming,面向切面,是Spring三大思想之一,另外两个是 IOC-控制反转 DI-依赖注入 (Autowired、Qualifier、Re…...

android系统启动流程之zygote如何创建SystemServer进程
SystemServer:是独立的进程,主要工作是管理服务的,它将启动大约90种服务Services. 它主要承担的职责是为APP的运行提供各种服务,像AMS,WMS这些服务并不是一个独立的进程, 它们其实都是SystemServer进程中需要管理的的众多服务之一…...

【awd系列】Bugku S3 AWD排位赛-9 pwn类型
文章目录 二进制下载检查分析运行二进制ida分析解题思路exp 二进制下载 下载地址:传送门 检查分析 [rootningan 3rd]# file pwn pwn: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for …...

vcomp140.dll丢失的修复方法分享,电脑提示vcomp140.dll丢失修复方法
今天,我的电脑出现了一个奇怪的问题,打开某些程序时总是提示“找不到vcomp140.dll文件”。这个问题让我非常头疼,因为我无法正常使用电脑上的一些重要软件。为了解决这个问题,我在网上查找了很多资料,并尝试了多种方法…...

Docker file解析
文章目录 简介构建的三步骤Docker执行Dockerfile的大致流程DockerFile常用保留字指令创建第一个Dockerfile镜像的缓存特性 Docker file 解析 简介 Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本,记录了镜像构…...
工作与身体健康之间的平衡
大厂裁员,称35岁以后体能下滑,无法继续高效率地完成工作;体重上涨,因为35岁以后新陈代谢开始变慢;甚至坐久了会腰疼、睡眠困扰开始加重,在众多的归因中,仿佛35岁的到来,会为一切的焦…...
算法和数据结构
STL 【C】蓝桥杯必备 算法竞赛常用STL万字总结_蓝桥杯算法竞赛_Cpt1024的博客-CSDN博客 day1 1:正确 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 // 中序遍历一遍二叉树,并统计节点数目 class Solution { public:int c…...

商城-学习整理-集群-K8S-集群环境部署(二十四)
目录 一、MySQL集群1、mysql集群原理2、Docker安装模拟MySQL主从复制集群1、下载mysql镜像2、创建Master实例并启动3、创建 Slave 实例并启动4、为 master 授权用户来同步数据1、进入 master 容器2、进入 mysql 内部 (mysql –uroot -p)3、查看 master 状…...

利用多种机器学习方法对爬取到的谷歌趋势某个关键词的每日搜索次数进行学习
大家好,我是带我去滑雪! 前一期利用python爬取了谷歌趋势某个关键词的每日搜索次数,本期利用爬取的数据进行多种机器学习方法进行学习,其中方法包括:随机森林、XGBOOST、决策树、支持向量机、神经网络、K邻近等方法&am…...

ARL资产侦察灯塔 指纹增强
项目:https://github.com/loecho-sec/ARL-Finger-ADD 下载项目后运行 python3 ARl-Finger-ADD.py https://你的vpsIP:5003/ admin password该项目中的finger.json可以自己找到其他的指纹完善,然后运行脚本添加指纹。...

javaee spring 自动注入,如果满足条件的类有多个如何区别
如图IDrinkDao有两个实现类 方法一 方法二 Resource(name“对象名”) Resource(name"oracleDrinkDao") private IDrinkDao drinkDao;...

sql语句中的ddl和dml
操作数据库:CRUD C(create) 创建 *数据库创建出来默认字符集为utf8 如果要更改字符集就 Create database 名称 character set gbk(字符集) *创建数据库:create database 名称 *先检查是否有该数据库在…...

学习JAVA打卡第四十一天
字符串与字符数组、字节数组 ⑴字符串与字符数组 String类的构造方法String(char a[])和String(char a[]),int offset,int length,分别用数组a中的全部字符和部分字符创建string对象。 String类也提供将string对象的字符序列存…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...