微积分基本概念
微分
函数的微分是指对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y = f ( x ) y = f(x) y=f(x) 的微分记作:
d y = f ′ ( x ) d x d_y = f^{'}(x)d_x dy=f′(x)dx
微分和导数的区别在于:导数是曲线在那个点的切线斜率,而微分是那个切线的一元线性方程。
微分的几何意义:是用局部切线段近似代替曲线段,即非线性函数局部线性化。
积分
积分可以分为定积分和不定积分两种。
定积分
对于函数 f ( x ) f(x) f(x) 在区间 [a,b] 上定积分记作:
∫ b a f ( x ) d x \int^{a}_{b}f(x)d_x ∫baf(x)dx
其几何意义为函数 f ( x ) f(x) f(x)在区间[a,b]上的覆盖面积,如下图:


不定积分
不定积分是导数的逆运算,即反导数。当 f f f是 F F F的导数时,则 F F F是 f f f的不定积分。常用公式如下:
- ∫ a d x = a x + C \int ad_x = ax + C ∫adx=ax+C
- ∫ x a d x = 1 a + 1 x a + 1 + C \int x^{a}d_x = {1\over a+1}x^{a+1} + C ∫xadx=a+11xa+1+C
- ∫ 1 x = l n ∣ x ∣ + C \int {1 \over x} = ln|x| + C ∫x1=ln∣x∣+C
- ∫ a x d x = a x l n a + C \int {a^xdx} = {a^x\over lna} + C ∫axdx=lnaax+C
- ∫ s i n x d x = − c o s x + C \int sin\ x\ dx = -cos\ x + C ∫sin x dx=−cos x+C
- ∫ c o s x d x = s i n x + C \int cos\ x\ dx = sin\ x + C ∫cos x dx=sin x+C
- ∫ t a n x d x = − l n ∣ c o s x ∣ + C \int tan\ x\ dx = -ln|cos\ x| + C ∫tan x dx=−ln∣cos x∣+C
泰勒公式
用多项式拟合原函数:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + . . . f(x) = f(x_0) + f^{'}(x_0)(x - x_0) + {f^{''}(x_0) \over 2!}(x - x_0)^2 + ... + {f^{n}(x_0) \over n!}(x - x_0)^n + ... f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+...+n!fn(x0)(x−x0)n+...
几何分析
如下内容来自如何通俗地解释泰勒公式?,因为在 x 0 x_0 x0点的任意阶导数都为常数,暂且不管,对于幂函数有如下特点:

多个幂函数相加:

增加阶乘后效果如下:

通过改变系数,多项式可以像铁丝一样弯成任意的函数曲线,对于 e ( x ) e(x) e(x)拟合:

相关文章:
微积分基本概念
微分 函数的微分是指对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。。对于函数 y f ( x ) y f(x) yf(x) 的微分记作: d y f ′ ( x ) d x d_y f^{}(x)d_x dyf′(x)dx 微分和…...
【业务功能篇78】微服务-前端后端校验- 统一异常处理-JSR-303-validation注解
5. 前端校验 我们在前端提交的表单数据,我们也是需要对提交的数据做相关的校验的 Form 组件提供了表单验证的功能,只需要通过 rules 属性传入约定的验证规则,并将 Form-Item 的 prop 属性设置为需校验的字段名即可 校验的页面效果 前端数据…...
pytorch的用法
...
Qt 设置窗口背景
窗口背景无非两种:背景色、背景图片。Qt中窗口背景如何设置? 一、QPalette设置背景 二、实现paintEvent,使用QPainter来绘制背景 三、使用QSS来设置背景 关于QSS的使用不想多说,一般我不用QSS设置窗口背景,也不建议…...
大模型是什么?泰迪大模型能够解决企业哪些痛点?
什么是大模型? 大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊…...
YOLOv7-tracker 目标追踪 输入视频帧
目录 1 项目安装1.1 环境搭建1.2 项目下载1.3 权重下载1.4 环境安装1.5 上传待检测的视频帧 2 视频帧检测与追踪2.1 检测与追踪2.3 结果 参考项目:https://github.com/JackWoo0831/Yolov7-tracker/tree/master github链接:https://github.com/Whiffe/Yo…...
C语言二——C语言编写一段代码,求一元二次方程的根
这段代码实现了解一元二次方程的根的计算。用户需要输入方程的系数a、b、c,然后根据判别式的值确定方程的根的情况,并进行相应的输出。 如果判别式大于0,说明方程有两个实根,分别计算并输出。如果判别式等于0,说明方程…...
用Idea把SpringBoot项目打包镜像上传至docker
1、设置docker把2375端口开起来 命令查看docker装在哪里 vim docker.service 新增 -H tcp://0.0.0.0:2375 -H unix://var/run/docker.sock 2、配置Dockerfile 我在跟pom同一层 3、配置docker-maven-plugin <plugin><groupId>com.spotify</groupId><arti…...
基于 SVG 的图形交互方案实践
不知道从什么时候起,人们开始喜欢上数字大屏这种“花里胡哨”的东西,仿佛只要用上“科技蓝”这样神奇的色调,就可以让一家公司焕然一新,瞬间变得科技感满满。不管数字大屏的实际意义,是用来帮助企业监控和决策…...
微服务(rpc)
微服务(rpc) 微服务必备的模块生产者消费者管理平台流量控制集群情况下如何做到流量监控 负载均衡服务发现和治理序列化传输序列化和反序列化 微服务是一种架构风格,将一个应用程序拆分为一组小型、独立的服务,每个服务都可以独立…...
ThinkPHP 多应用配置,及不同域名访问不同应用的配置【详解】
ThinkPHP 多应用配置,及不同域名访问不同应用的配置【详解】 一、安装多应用扩展二、删除项目的中默认的controller文件夹三、创建多应用四、修改config/app.php文件五、测试并且访问多应用六、配置小皮,不同域名访问不同的应用七、小结 一、安装多应用扩…...
Springboot+Mybatis框架是否会取代SSM框架?
个人认真思考的观点:从市场使用来说,会有这个趋势。从技术上来说,不存在被替代这一说。 Spring BootMybatis框架是指使用Spring Boot作为基础框架,并集成Mybatis作为持久层框架的组合,它是一个基于Spring框架的快速开发…...
使用windeployqt和InstallShield打包发布Qt软件的流程
前言 Qt编译之后需要打包发布,并且发布给用户后需要增加一个安装软件,通过安装软件可以实现Qt软件的安装;用于安装软件的软件有很多,这里主要介绍InstallShield使用的流程; 使用windeployqt打包Qt编译后的程序 Qt程序…...
解决selenium的getdrive()方法阻塞问题
selenium里面的Webdriver的get()方法默认是阻塞的,也就是说要等整个页面全都加载完它才会相应。但我们大部分时候不需要用到页面里的所有东西,也许只需要用到里面的一个元素就行了 所以下面是我的解决方法: 初始化代码: # 设置…...
js的闭包
闭包是有权限访问其他函数作用域的局部变量的一个函数 代码 function outer(){const a1;function f(){console.log(a)}f()}outer() 简单来说:闭包内层函数引用的外层函数变量 为什么要使用闭包? 用此方法可以来统计函数调用次数, 但是如…...
ubuntu20.04 直接安装vpp23.06 测试双 VPP Tunnel Ike2
环境信息:VMware Workstation 17 Pro ubuntu20.04 (清华源) ubuntu 源点进去选:ubuntu-22.04.3-desktop-amd64.iso 如果之前装过VPP,用以下命令确定是否卸载干净: dpkg -l | grep vpp dpkg -l | grep DPDK 卸载: …...
mysql sql 执行流程
监控查询缓存的命中率 show status like ‘%qcache%’; mysql 缓存机制,以及 8.0 为啥取消 select sql_NO_Cache * from 表 where xxx; # 不使用缓存...
go-kafka
go kafka包 本文使用的是kafka-go 6.5k 这个包 其他包参考: 我们在细分市场中非常依赖GO和Kafka。不幸的是,在撰写本文时,Kafka的GO客户库的状态并不理想。可用选项是: 萨拉玛(Sarama) 10k,这…...
如何在windows电脑上安装多个node,并可以进行随意切换
一、进入官网http://nvm.uihtm.com/ 下载 二、启动解压后的程序 1.开始安装nvm 选择要安装的目录 一直下一步–下一步–最后点击完成 3.最后点击完成即可 : 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
