当前位置: 首页 > news >正文

YOLOv5、v8改进:CrissCrossAttention注意力机制

目录

1.简介

2. yolov5添加方法:

2.1common.py构建CrissCrossAttention模块

2.2yolo.py中注册 CrissCrossAttention模块

2.3修改yaml文件。


1.简介

这是ICCV2019的用于语义分割的论文,可以说和CVPR2019的DANet遥相呼应。

和DANet一样,CCNet也是想建模像素之间的long range dependencies,来做更加丰富的contextual information,来补充特征图,以此来提升语义分割的性能。但是和DANet不一样,CCNet仅考虑空间分辨上的建模,不考虑建模通道之间的联系。作者提出的模块,criss-cross attention module,针对空间维度上的建模,对于空间位置的一个点u,仅考虑建模和u在同一行或者同一列的其他位置的像素之间的联系。相比DANet,能减少很多计算量,但是不足的是,对一个点的特征向量,尽管有同一行或者同一列的其他像素信息作为补充,对于语义分割任务,contextual information仍然是稀疏的(sparse),因为语义分割更在意一个像素和它周围的一些像素的关系。针对这个问题,作者提出了recurrent criss-cross attention module,来建模一个像素和全局所有像素的关系。方式是通过重复criss-cross attention module来实现的。这些module也是参数shared的。

同样是建模空间维度的pixel-wise contextual information,CCNet的计算量相较于self attention,可小太多了。一个CC module,要处理的是一个像素点和同一行、同一列一共(H+W-1)这么多的像素,那么应用在所有像素上,计算量就是O(HW(H+W-1))。回顾DANet的空间注意力分支(position attention module),每一个像素就要和(HW)个像素建模之间的联系,应用在所有相素,计算量就是O(HW*(H*W))。
通过递归的方式用CC module,可以对一个像素捕捉到全局的contextual information,提到了语义分割任务的效果。
个人看法,简单且有效的,就是极其优秀的方法,CCNet就属于这一类方法。
 

在这里插入图片描述

1.首先一个原图送进backbone,这个backbone是修改过的,把最后两个stage的stride改为1,同时应用空洞卷积来增大感受野。得到的特征图是原图的1/8.

2.然后经过1*1的卷积降维。得到H

3.H经过一个criss-cross attention module 得到H ′ 这个时候,H’中的每个位置都捕捉到了和u在同一行或者同一列的context information

4.H’经过一个相同结构、相同参数的cc module,得到了H’’。在H‘’中的每个位置,捕捉的是全局性的contextual information
5..最后经过一个分割层输出最后的预测结果。
在这里插入图片描述

 

之前改进增加了很多注意力机制的方法,包括比较常规的SE、CBAM等,本文加入CrissCrossAttention注意力机制,该注意力机制为应用在语义分割中的模块,用于可以让网络更加关注待检测目标,提高检测效果

基本原理:

       语义分割的Criss-Cross网络(CCNet)的细节。我们首先介绍了CCNet的总体框架。然后,将介绍在水平和垂直方向捕获上下文信息的2D交叉注意力模块。为了获取密集的全局上下文信息,我们建议对交叉注意力模块采用循环操作。为了进一步改进RCCA,我们引入了判别损失函数来驱动RCCA学习类别一致性特征。最后,我们提出了同时利用时间和空间上下文信息的三维交叉注意模块。

2. yolov5添加方法:

2.1common.py构建CrissCrossAttention模块

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Softmaxdef INF(B,H,W):return -torch.diag(torch.tensor(float("inf")).repeat(H),0).unsqueeze(0).repeat(B*W,1,1)class CrissCrossAttention(nn.Module):""" Criss-Cross Attention Module"""def __init__(self, in_dim):super(CrissCrossAttention,self).__init__()self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)self.softmax = Softmax(dim=3)self.INF = INFself.gamma = nn.Parameter(torch.zeros(1))def forward(self, x):m_batchsize, _, height, width = x.size()proj_query = self.query_conv(x)proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height).permute(0, 2, 1)proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width).permute(0, 2, 1)proj_key = self.key_conv(x)proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)proj_value = self.value_conv(x)proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)concate = self.softmax(torch.cat([energy_H, energy_W], 3))att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height)#print(concate)#print(att_H) att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width)out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1)out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3)#print(out_H.size(),out_W.size())return self.gamma*(out_H + out_W) + x

2.2yolo.py中注册 CrissCrossAttention模块

elif m is CrissCrossAttention:c1, c2 = ch[f], args[0]if c2 != no:c2 = make_divisible(c2 * gw, 8)args = [c1, *args[1:]]

2.3修改yaml文件。

# YOLOAir 🚀, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOAir v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOAir v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[-1, 1, CrissCrossAttention, [1024]], #修改[[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

YOLOv8和v5的改法是一致的

有什么问题可以评论区私聊

相关文章:

YOLOv5、v8改进:CrissCrossAttention注意力机制

目录 1.简介 2. yolov5添加方法: 2.1common.py构建CrissCrossAttention模块 2.2yolo.py中注册 CrissCrossAttention模块 2.3修改yaml文件。 1.简介 这是ICCV2019的用于语义分割的论文,可以说和CVPR2019的DANet遥相呼应。 和DANet一样,…...

RabbitMQ特性介绍和使用案例

❤ 作者主页:李奕赫揍小邰的博客 ❀ 个人介绍:大家好,我是李奕赫!( ̄▽ ̄)~* 🍊 记得点赞、收藏、评论⭐️⭐️⭐️ 📣 认真学习!!!🎉🎉 文章目录 RabbitMQ特性…...

Ansible 使用 RHEL 系统角色

安装 RHEL 系统角色软件包,并创建符合以下条件的 playbook /home/greg/ansible/timesync.yml 在所有受管节点上运行 使用 timesync 角色 配置该角色,以使用当前有效的 NTP 提供商 配置该角色,以使用时间服务器 172.25.254.254 配置该角色&am…...

重新认识Android中的线程

线程的几种创建方式 new Thread:可复写Thread#run方法。也可以传递Runnable对象,更加灵活。缺点:缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统的资源导致死机或oom。 new Thread(new…...

前端(十五)——GitHub开源一个react封装的图片预览组件

👵博主:小猫娃来啦 👵文章核心:GitHub开源一个react封装的图片预览组件 文章目录 组件开源代码下载地址运行效果展示实现思路使用思路和api实现的功能数据和入口部分代码展示 组件开源代码下载地址 Gitee:点此跳转下载…...

DELL Power Edge R740 安装 OracleLinux-R7-U9-Server

一、准备好 OracleLinux-R7-U9-Server-x86_64-dvd 安装介子: 二、通过 iDRAC挂dvd 安装介子 三、在 iDRAC 开机控制选择虚拟 CD/DCD/ISO 电源控制选择 复位系统(热启动) 四、进入安装阶段 五、配置时区 六、配置磁盘 七、删除之前的旧分区 …...

深入了解OpenStack:创建定制化QCOW2格式镜像的完全指南

OpenStack 创建自定义的QCOW2格式镜像 前言 建议虚机网络配置为 NAT 或 桥接,因为未来 KVM虚机 需要借助 虚机 的外网能力进行联网安装软件包 虚机在启动前,必须在 VMware Workstation 上为其开启虚拟化引擎 虚拟化 Intel VT-x/EPT 或 AMD-V 安装kvm …...

【Java 中级】一文精通 Spring MVC - 数据格式化器(六)

👉博主介绍: 博主从事应用安全和大数据领域,有8年研发经验,5年面试官经验,Java技术专家,WEB架构师,阿里云专家博主,华为云云享专家,51CTO 专家博主 ⛪️ 个人社区&#x…...

Linux内核学习(十二)—— 页高速缓存和页回写(基于Linux 2.6内核)

目录 一、缓存手段 二、Linux 页高速缓存 三、flusher 线程 Linux 内核实现了一个被叫做页高速缓存(page cache)的磁盘缓存,它主要用来减少对磁盘的 I/O 操作。它是通过把磁盘中的数据缓存到内存中,把对磁盘的访问变为对物理内…...

大数据-玩转数据-Flink窗口函数

一、Flink窗口函数 前面指定了窗口的分配器, 接着我们需要来指定如何计算, 这事由window function来负责. 一旦窗口关闭, window function 去计算处理窗口中的每个元素. window function 可以是ReduceFunction,AggregateFunction,or ProcessWindowFunction中的任意一种. Reduc…...

Docker网络-探索容器网络如何相互通信

当今世界,企业热衷于容器化,这需要强大的网络技能来正确配置容器架构,因此引入了 Docker Networking 的概念。Docker 是一种容器化平台,允许您在独立、轻量级的容器中运行应用程序和服务。Docker 提供了一套强大的网络功能&#x…...

ESP32-CAM模块Arduino环境搭建测试

ESP32-CAM模块Arduino环境搭建测试 一.ESP32OV2640摄像头模块CameraWebServer视频查看 二.测试ESP32-CAM(后续称cam模块)代码是否上传执行成功测试 const int led0 12; const int led1 13;void setup() {// put your setup code here, to run once:pinMode(led0, OUTPUT);pin…...

webassembly001 webassembly简述

WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly(缩写为Wasm)是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…...

vue 使用C-Lodop打印小票

先从官网下载js文件 https://www.lodop.net/LodopDemo.html 打开安装程序,一直下一步既可,我这边已经安装过就不演示了。 // 引入 import { getLodop } from /utils/CLodopfuncs.js;// 使用 let LODOP getLodop()let Count LODOP.GET_PRINTER_COUNT…...

【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:C从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学习C   🔝🔝 vector 1. 前言2. 熟悉vector的接口函数2.1 vec…...

1. import pandas as pd 导入库

【目录】 文章目录 1. import pandas as pd 导入库1. pandas库的概念2. 导入pandas库2.1 常规导入2.2 别名导入 3. 别名的作用4. 课堂练习 【正文】 1. import pandas as pd 导入库 【学习时间】 10分钟 1. pandas库的概念 pandas:熊猫panda的复数, …...

DMK5框选变量之后不显示其他位置的此变量高亮

使用软件MDK5.3.8版本 如下在2的位置选择之后,其他同样的变量没有高亮,因为1的原因折叠了; 展开折叠之后就可以了...

0061__Appium

Appium Documentation - Appium Documentation APP自动化测试(3)-Appium Inspector介绍_六天测试工程师的博客-CSDN博客 https://github.com/appium/appium-inspector https://github.com/appium/appium-desktop https://github.com/appium/appium...

【DEVOPS】需求跟踪管理全面落地

0. 目录 1. 现状/背景2. 需求管理存在的问题3. 改进思路/措施4. 所谓"禅道尚未普及/铺开"5. 最后6. 相关 1. 现状/背景 近期又被领导问到"如何对项目过程中的需求进行量化和跟踪管理"。这真是一个狗皮膏药似的问题,反反复复地,隔一…...

算法修炼Day57|647. 回文子串 ● 516.最长回文子序列

LeetCode:647. 回文子串 647. 回文子串 - 力扣(LeetCode) 1.思路 暴力思路见对应代码… 动规解法:画图推导动规公式,当前状态由左侧和左下角推出,所以首层应该采用倒序的方式,内部采用正序的方式。 2.…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...

C++ 设计模式 《小明的奶茶加料风波》

👨‍🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...