当前位置: 首页 > news >正文

matlab实现牛顿迭代法求解非线性方程

非线性方程是指含有未知数的方程,且方程中至少有一个未知数的次数大于一或者含有非一次幂的函数(如指数、对数、三角函数等)。例如,$f(x) = x^3 - 2x - 5 = 0$就是一个非线性方程。非线性方程通常没有显式的解析解,因此需要使用数值方法来近似求解。

牛顿迭代法(Newton's method)是一种常用的数值方法,它利用函数的导数来构造一个迭代序列,逐步逼近方程的根。牛顿迭代法的基本思想是:假设$f(x)$在某个初始点$x_0$附近有根$x^*$,则可以用$f(x)$在$x_0$处的切线来近似$f(x)$,并求出切线与$x$轴的交点$x_1$作为下一个近似值。然后重复这个过程,直到满足某个收敛条件。

牛顿迭代法的迭代公式为:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

其中,$f'(x)$表示$f(x)$的导数,$n$表示迭代次数。

为了使用matlab实现牛顿迭代法,我们需要定义以下几个要素:

- 非线性方程$f(x)$及其导数$f'(x)$
- 初始点$x_0$
- 收敛条件(如最大迭代次数、误差容限等)

下面是一个使用matlab实现牛顿迭代法求解$f(x) = x^3 - 2x - 5 = 0$的示例代码:

% 定义非线性方程及其导数
f = @(x) x^3 - 2*x - 5;
fp = @(x) 3*x^2 - 2;% 定义初始点
x0 = 2;% 定义最大迭代次数和误差容限
maxiter = 100;
tol = 1e-6;% 初始化迭代次数和误差
iter = 0;
err = inf;% 进行牛顿迭代
while iter < maxiter && err > tol% 计算下一个近似值x1 = x0 - f(x0)/fp(x0);% 计算误差err = abs(x1 - x0);% 更新迭代次数和初始点iter = iter + 1;x0 = x1;
end% 输出结果
if err <= tolfprintf('方程的根为:%.6f\n', x1);fprintf('迭代次数为:%d\n', iter);
elsefprintf('未达到收敛条件\n');
end

运行上述代码,得到输出结果为:

方程的根为:2.094551
迭代次数为:5

可以看出,牛顿迭代法在5次迭代后就达到了收敛条件,并得到了方程的一个根。当然,这个结果可能会随着初始点和收敛条件的不同而有所变化。牛顿迭代法的优点是收敛速度快,缺点是需要知道函数的导数,并且可能会遇到奇点或者震荡的情况。 

相关文章:

matlab实现牛顿迭代法求解非线性方程

非线性方程是指含有未知数的方程&#xff0c;且方程中至少有一个未知数的次数大于一或者含有非一次幂的函数&#xff08;如指数、对数、三角函数等&#xff09;。例如&#xff0c;$f(x) x^3 - 2x - 5 0$就是一个非线性方程。非线性方程通常没有显式的解析解&#xff0c;因此需…...

Cpp学习——编译链接

目录 ​编辑 一&#xff0c;两种环境 二&#xff0c;编译环境下四个部分的 1.预处理 2.编译 3.汇编 4.链接 三&#xff0c;执行环境 一&#xff0c;两种环境 在程序运行时会有两种环境。第一种便是编译环境&#xff0c;第二种则是执行环境。如下图&#xff1a; 在程序运…...

android - fragment 数据丢失?状态丢失?

最佳答案 一些状态丢失的例子: 1. 假设您有一个按钮和一个 TextView 。在代码中&#xff0c;你已经定义了初始值为 0 的整数 i&#xff0c;它通过单击按钮递增 1&#xff0c;并且它的值显示在 TextView 中。假设你已经按下按钮 5 次&#xff0c;那么 textview 将被设置为 0。也…...

Git基本操作

本地仓库 当我们初始化&#xff08;git init&#xff09;之后&#xff0c;会在当前目录下生成一个与项目并列的.git文件夹&#xff0c;当我们对项目作出更改之后使用git commit命令&#xff0c;一般是将修改提交到本地仓库&#xff0c;也就是该文件夹下面的文件会对应修改&…...

Nginx配置文件详解

Nginx配置文件详解 1、Nginx配置文件1.1主配置文件详解1.2子配置文件 2、全局配置部分2.1修改启动的工作进程数&#xff08;worker process) 优化2.2cpu与worker process绑定2.3 PID 路径修改2.4 修改工作进程的优先级2.5调试工作进程打开的文件的个数2.6关闭master-worker工作…...

【0217】stats collector(统计信息收集器)进程启动原理(1)

文章目录 1. 启动 stats collector进程1.1 stats collector进程启动过程1.1.1 检查套接字 pgStatSock 是否存在1.1.2 重新启动失败的stats collector频率1.1.3 fork() 三种返回值处理1.2 detach所有共享内存段1.3 detach 共享内存段1.4 stats collecotr进程启动的主体相关阅读:…...

【应用层】网络基础 -- HTTPS协议

HTTPS 协议原理加密为什么要加密常见的加密方式对称加密非对称加密 数据摘要&&数据指纹 HTTPS 的工作过程探究方案1-只使用对称加密方案2-只使用非对称加密方案3-双方都使用非对称加密方案4-非对称加密对称加密中间人攻击-针对上面的场景 CA认证理解数据签名方案5-非对…...

实验篇—— 基因家族Motif 分析

实验篇—— 基因家族Motif 分析 文章目录 前言一、名词解释二、实操1. MEME工具箱2. Motif Discovery&#xff08;基序发现&#xff09;1. 结果网页2. 在TBtools中&#xff08;额外&#xff09; 2. Motif Enrichment&#xff08;基序富集分析&#xff09;3. Motif Search&#…...

Linux拓展之阻止或禁用普通用户登录

禁止指定用户登录 chsh -s /sbin/nologin 指定用户名示例 chsh -s /sbin/nologin testuser恢复指定用户登录 chsh -s /bin/bash 指定用户名示例 chsh -s /bin/bash testuser参考 https://blog.csdn.net/cnds123321/article/details/125232580 https://www.cnblogs.com/cai…...

Linux系统USB摄像头测试程序(四)_视频旋转及缩放

下面的程序实现了视频的旋转及缩放&#xff0c;窗口中点击鼠标左键视频向左旋转&#xff0c;点击鼠标右键视频向右旋转并且视频缩小了二分之一。程序中首先把yvyv422转换成了RGB24&#xff0c;然后利用opencv进行了旋转和缩放&#xff0c;其后用sdl2进行了渲染。使用了ffmpeg、…...

大模型+学习机,是概念游戏还是双向奔赴?

众所周知&#xff0c;2023年上半年大模型概念炙手可热。各大科技公司纷纷卷入&#xff0c;或宣称布局相关领域&#xff0c;或率先官宣自研大模型。而随着资本市场对大模型概念的热情有所消退&#xff0c;属于这片战场的新一轮角逐慢慢聚焦在了技术的落地应用上。 8月15日&#…...

linux怎么查看用户属于哪个组

查看当前用户所属组 shell> groups root查看指定用户所属组 shell> groups testuser testuser : testusershell> id testuser uid1000(testuser) gid1000(testuser) groups1000(testuser)查看组文件 shell> cat /etc/group...

邂逅JavaScript

前言&#xff1a;前端三大核心 前端开发最主要需要掌握的是三个知识点&#xff1a;HTML、CSS、JavaScript 一、认识编程语言 1.计算机语言 前面我们已经学习了HTML和CSS很多相关的知识: 在之前我们提到过, HTML是一种标记语言, CSS也是一种样式语言; 他们本身都是属于计算…...

Android 中 Fragment判空

1. 判断 Fragment 是否已经被添加到 Activity 中&#xff0c;可以通过 Fragment 的 isAdded() 方法来判断。 2. 判断 Fragment 的 View 是否已经被创建&#xff0c;可以通过 Fragment 的 getView() 方法来判断。 3. 判断 Fragment 是否已经被销毁&#xff0c;可以通过 Fragme…...

软考高级系统架构设计师系列论文八十八:财务数据仓库系统的设计与实现

软考高级系统架构设计师系列论文八十八:财务数据仓库系统的设计与实现 一、摘要二、正文三、总结一、摘要 近年来,数据仓库技术在信息系统的建设中得到了广泛应用,有效地为决策提供了支持。2020年6月,本人所在单位组织开发了财务管理决策系统,该系统主要是使高层领导掌握企…...

fastdeploy部署多线程/进程paddle ocr(python flask框架 )

部署参考&#xff1a;https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/multi_thread/python/pipeline/README_CN.md 安装 cpu&#xff1a; pip install fastdeploy-python gpu &#xff1a;pip install fastdeploy-gpu-python #下载部署示例代码 git cl…...

【图论】拓扑排序

一.定义 拓扑排序是一种对有向无环图&#xff08;DAG&#xff09;进行排序的算法&#xff0c;使得图中的每个顶点在排序中都位于其依赖的顶点之后。它通常用于表示一些任务之间的依赖关系&#xff0c;例如在一个项目中&#xff0c;某些任务必须在其他任务之前完成。 拓扑排序的…...

自动化备份方案

背景说明 网上有很多教程&#xff0c;写的都是从零搭建一个什么什么&#xff0c;基本上都是从无到有的教程&#xff0c;但是&#xff0c;很少有文章提及搭建好之后如何备份&#xff0c;这次通过请教GitHub Copilot Chat&#xff0c;生成几个备份脚本&#xff0c;以备后用。 注…...

win11出现安全中心空白和IT管理员已限制对此应用的某些区域的访问

问题 windows安全中心服务被禁用 winr 输入services.msc 找到windows安全中心服务查看是否被禁用&#xff0c;改为启动&#xff0c;不可以改动看第三条 打开设置&#xff0c;找到应用—windows安全中心–终止–修复–重置 重启如果还是不行看第四条 家庭版系统需要打开gped…...

github实用指令(实验室打工人入门必备)

​​​​​​​​博主进入实验室啦&#xff0c;作为一只手残党决定在这里分享一些常用的github使用情景和操作指南来解救其他手残党。 内容随着情景增加实时更新。如果只有没几个内容说明场景不多&#xff08;相信对手残党而言是再好不过的消息&#xff09; 情景一&#xff1a…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

Centos 7 服务器部署多网站

一、准备工作 安装 Apache bash sudo yum install httpd -y sudo systemctl start httpd sudo systemctl enable httpd创建网站目录 假设部署 2 个网站&#xff0c;目录结构如下&#xff1a; bash sudo mkdir -p /var/www/site1/html sudo mkdir -p /var/www/site2/html添加测试…...

MySQL用户远程访问权限设置

mysql相关指令 一. MySQL给用户添加远程访问权限1. 创建或者修改用户权限方法一&#xff1a;创建用户并授予远程访问权限方法二&#xff1a;修改现有用户的访问限制方法三&#xff1a;授予特定数据库的特定权限 2. 修改 MySQL 配置文件3. 安全最佳实践4. 测试远程连接5. 撤销权…...

智能问数Text2SQL Vanna windows场景验证

架构 Vanna 是一个开源 Python RAG&#xff08;检索增强生成&#xff09;框架&#xff0c;用于 SQL 生成和相关功能。 机制 Vanna 的工作过程分为两个简单步骤 - 在您的数据上训练 RAG“模型”&#xff0c;然后提出问题&#xff0c;这些问题将返回 SQL 查询&#xff0c;这些查…...