当前位置: 首页 > news >正文

matlab实现牛顿迭代法求解非线性方程

非线性方程是指含有未知数的方程,且方程中至少有一个未知数的次数大于一或者含有非一次幂的函数(如指数、对数、三角函数等)。例如,$f(x) = x^3 - 2x - 5 = 0$就是一个非线性方程。非线性方程通常没有显式的解析解,因此需要使用数值方法来近似求解。

牛顿迭代法(Newton's method)是一种常用的数值方法,它利用函数的导数来构造一个迭代序列,逐步逼近方程的根。牛顿迭代法的基本思想是:假设$f(x)$在某个初始点$x_0$附近有根$x^*$,则可以用$f(x)$在$x_0$处的切线来近似$f(x)$,并求出切线与$x$轴的交点$x_1$作为下一个近似值。然后重复这个过程,直到满足某个收敛条件。

牛顿迭代法的迭代公式为:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

其中,$f'(x)$表示$f(x)$的导数,$n$表示迭代次数。

为了使用matlab实现牛顿迭代法,我们需要定义以下几个要素:

- 非线性方程$f(x)$及其导数$f'(x)$
- 初始点$x_0$
- 收敛条件(如最大迭代次数、误差容限等)

下面是一个使用matlab实现牛顿迭代法求解$f(x) = x^3 - 2x - 5 = 0$的示例代码:

% 定义非线性方程及其导数
f = @(x) x^3 - 2*x - 5;
fp = @(x) 3*x^2 - 2;% 定义初始点
x0 = 2;% 定义最大迭代次数和误差容限
maxiter = 100;
tol = 1e-6;% 初始化迭代次数和误差
iter = 0;
err = inf;% 进行牛顿迭代
while iter < maxiter && err > tol% 计算下一个近似值x1 = x0 - f(x0)/fp(x0);% 计算误差err = abs(x1 - x0);% 更新迭代次数和初始点iter = iter + 1;x0 = x1;
end% 输出结果
if err <= tolfprintf('方程的根为:%.6f\n', x1);fprintf('迭代次数为:%d\n', iter);
elsefprintf('未达到收敛条件\n');
end

运行上述代码,得到输出结果为:

方程的根为:2.094551
迭代次数为:5

可以看出,牛顿迭代法在5次迭代后就达到了收敛条件,并得到了方程的一个根。当然,这个结果可能会随着初始点和收敛条件的不同而有所变化。牛顿迭代法的优点是收敛速度快,缺点是需要知道函数的导数,并且可能会遇到奇点或者震荡的情况。 

相关文章:

matlab实现牛顿迭代法求解非线性方程

非线性方程是指含有未知数的方程&#xff0c;且方程中至少有一个未知数的次数大于一或者含有非一次幂的函数&#xff08;如指数、对数、三角函数等&#xff09;。例如&#xff0c;$f(x) x^3 - 2x - 5 0$就是一个非线性方程。非线性方程通常没有显式的解析解&#xff0c;因此需…...

Cpp学习——编译链接

目录 ​编辑 一&#xff0c;两种环境 二&#xff0c;编译环境下四个部分的 1.预处理 2.编译 3.汇编 4.链接 三&#xff0c;执行环境 一&#xff0c;两种环境 在程序运行时会有两种环境。第一种便是编译环境&#xff0c;第二种则是执行环境。如下图&#xff1a; 在程序运…...

android - fragment 数据丢失?状态丢失?

最佳答案 一些状态丢失的例子: 1. 假设您有一个按钮和一个 TextView 。在代码中&#xff0c;你已经定义了初始值为 0 的整数 i&#xff0c;它通过单击按钮递增 1&#xff0c;并且它的值显示在 TextView 中。假设你已经按下按钮 5 次&#xff0c;那么 textview 将被设置为 0。也…...

Git基本操作

本地仓库 当我们初始化&#xff08;git init&#xff09;之后&#xff0c;会在当前目录下生成一个与项目并列的.git文件夹&#xff0c;当我们对项目作出更改之后使用git commit命令&#xff0c;一般是将修改提交到本地仓库&#xff0c;也就是该文件夹下面的文件会对应修改&…...

Nginx配置文件详解

Nginx配置文件详解 1、Nginx配置文件1.1主配置文件详解1.2子配置文件 2、全局配置部分2.1修改启动的工作进程数&#xff08;worker process) 优化2.2cpu与worker process绑定2.3 PID 路径修改2.4 修改工作进程的优先级2.5调试工作进程打开的文件的个数2.6关闭master-worker工作…...

【0217】stats collector(统计信息收集器)进程启动原理(1)

文章目录 1. 启动 stats collector进程1.1 stats collector进程启动过程1.1.1 检查套接字 pgStatSock 是否存在1.1.2 重新启动失败的stats collector频率1.1.3 fork() 三种返回值处理1.2 detach所有共享内存段1.3 detach 共享内存段1.4 stats collecotr进程启动的主体相关阅读:…...

【应用层】网络基础 -- HTTPS协议

HTTPS 协议原理加密为什么要加密常见的加密方式对称加密非对称加密 数据摘要&&数据指纹 HTTPS 的工作过程探究方案1-只使用对称加密方案2-只使用非对称加密方案3-双方都使用非对称加密方案4-非对称加密对称加密中间人攻击-针对上面的场景 CA认证理解数据签名方案5-非对…...

实验篇—— 基因家族Motif 分析

实验篇—— 基因家族Motif 分析 文章目录 前言一、名词解释二、实操1. MEME工具箱2. Motif Discovery&#xff08;基序发现&#xff09;1. 结果网页2. 在TBtools中&#xff08;额外&#xff09; 2. Motif Enrichment&#xff08;基序富集分析&#xff09;3. Motif Search&#…...

Linux拓展之阻止或禁用普通用户登录

禁止指定用户登录 chsh -s /sbin/nologin 指定用户名示例 chsh -s /sbin/nologin testuser恢复指定用户登录 chsh -s /bin/bash 指定用户名示例 chsh -s /bin/bash testuser参考 https://blog.csdn.net/cnds123321/article/details/125232580 https://www.cnblogs.com/cai…...

Linux系统USB摄像头测试程序(四)_视频旋转及缩放

下面的程序实现了视频的旋转及缩放&#xff0c;窗口中点击鼠标左键视频向左旋转&#xff0c;点击鼠标右键视频向右旋转并且视频缩小了二分之一。程序中首先把yvyv422转换成了RGB24&#xff0c;然后利用opencv进行了旋转和缩放&#xff0c;其后用sdl2进行了渲染。使用了ffmpeg、…...

大模型+学习机,是概念游戏还是双向奔赴?

众所周知&#xff0c;2023年上半年大模型概念炙手可热。各大科技公司纷纷卷入&#xff0c;或宣称布局相关领域&#xff0c;或率先官宣自研大模型。而随着资本市场对大模型概念的热情有所消退&#xff0c;属于这片战场的新一轮角逐慢慢聚焦在了技术的落地应用上。 8月15日&#…...

linux怎么查看用户属于哪个组

查看当前用户所属组 shell> groups root查看指定用户所属组 shell> groups testuser testuser : testusershell> id testuser uid1000(testuser) gid1000(testuser) groups1000(testuser)查看组文件 shell> cat /etc/group...

邂逅JavaScript

前言&#xff1a;前端三大核心 前端开发最主要需要掌握的是三个知识点&#xff1a;HTML、CSS、JavaScript 一、认识编程语言 1.计算机语言 前面我们已经学习了HTML和CSS很多相关的知识: 在之前我们提到过, HTML是一种标记语言, CSS也是一种样式语言; 他们本身都是属于计算…...

Android 中 Fragment判空

1. 判断 Fragment 是否已经被添加到 Activity 中&#xff0c;可以通过 Fragment 的 isAdded() 方法来判断。 2. 判断 Fragment 的 View 是否已经被创建&#xff0c;可以通过 Fragment 的 getView() 方法来判断。 3. 判断 Fragment 是否已经被销毁&#xff0c;可以通过 Fragme…...

软考高级系统架构设计师系列论文八十八:财务数据仓库系统的设计与实现

软考高级系统架构设计师系列论文八十八:财务数据仓库系统的设计与实现 一、摘要二、正文三、总结一、摘要 近年来,数据仓库技术在信息系统的建设中得到了广泛应用,有效地为决策提供了支持。2020年6月,本人所在单位组织开发了财务管理决策系统,该系统主要是使高层领导掌握企…...

fastdeploy部署多线程/进程paddle ocr(python flask框架 )

部署参考&#xff1a;https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/multi_thread/python/pipeline/README_CN.md 安装 cpu&#xff1a; pip install fastdeploy-python gpu &#xff1a;pip install fastdeploy-gpu-python #下载部署示例代码 git cl…...

【图论】拓扑排序

一.定义 拓扑排序是一种对有向无环图&#xff08;DAG&#xff09;进行排序的算法&#xff0c;使得图中的每个顶点在排序中都位于其依赖的顶点之后。它通常用于表示一些任务之间的依赖关系&#xff0c;例如在一个项目中&#xff0c;某些任务必须在其他任务之前完成。 拓扑排序的…...

自动化备份方案

背景说明 网上有很多教程&#xff0c;写的都是从零搭建一个什么什么&#xff0c;基本上都是从无到有的教程&#xff0c;但是&#xff0c;很少有文章提及搭建好之后如何备份&#xff0c;这次通过请教GitHub Copilot Chat&#xff0c;生成几个备份脚本&#xff0c;以备后用。 注…...

win11出现安全中心空白和IT管理员已限制对此应用的某些区域的访问

问题 windows安全中心服务被禁用 winr 输入services.msc 找到windows安全中心服务查看是否被禁用&#xff0c;改为启动&#xff0c;不可以改动看第三条 打开设置&#xff0c;找到应用—windows安全中心–终止–修复–重置 重启如果还是不行看第四条 家庭版系统需要打开gped…...

github实用指令(实验室打工人入门必备)

​​​​​​​​博主进入实验室啦&#xff0c;作为一只手残党决定在这里分享一些常用的github使用情景和操作指南来解救其他手残党。 内容随着情景增加实时更新。如果只有没几个内容说明场景不多&#xff08;相信对手残党而言是再好不过的消息&#xff09; 情景一&#xff1a…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...