当前位置: 首页 > news >正文

【pytorch】ModuleList 与 ModuleDict

ModuleList 与 ModuleDict

  • 1、ModuleList
  • 2、ModuleDict
  • 3、总结


1、ModuleList

1)ModuleList 接收一个子模块的列表作为输入,然后也可以类似 List 那样进行 append 和 extend 操作:

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 可使用类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError# 输出:
# Linear(in_features=256, out_features=10, bias=True)
# ModuleList(
#   (0): Linear(in_features=784, out_features=256, bias=True)
#   (1): ReLU()
#   (2): Linear(in_features=256, out_features=10, bias=True)
# )

\quad
2)nn.Sequentialnn.ModuleList 二者的区别:

  • nn.ModuleList 仅仅是一个储存各种模块的列表,这些模块之间没有联系(所以不用保证相邻层的输入输出维度匹配), 而 nn.Sequential 内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配
  • nn.ModuleList 没有实现 forward 功能需要自己实现,所以上面执行 net(torch.zeros(1, 784)) 会报 NotImplementedError;而nn.Sequential 内部 forward 功能已经实现。

ModuleList 的出现只是让网络定义前向传播时更加灵活,见下面官网的例子:

class MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])def forward(self, x):# ModuleList can act as an iterable, or be indexed using intsfor i, l in enumerate(self.linears):x = self.linears[i // 2](x) + l(x)return x

\quad
3)另外,nn.ModuleList 不同于一般的 Python 的 list,加入到 nn.ModuleList 里面的所有模块的参数会被自动添加到整个网络中,下面看一个例子对比一下。

import torch
import torch.nn as nnclass Module_ModuleList(nn.Module):def __init__(self):super(Module_ModuleList, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10)])class Module_List(nn.Module):def __init__(self):super(Module_List, self).__init__()self.linears = [nn.Linear(10, 10)]net1 = Module_ModuleList()
net2 = Module_List()print(net1)
for p in net1.parameters():print(p.size())print('*'*20)
print(net2)
for p in net2.parameters():print(p)

输出

Module_ModuleList((linears): ModuleList((0): Linear(in_features=10, out_features=10, bias=True))
)
torch.Size([10, 10])
torch.Size([10])
********************
Module_List()

2、ModuleDict

ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:

net = nn.ModuleDict({'linear': nn.Linear(784, 256),'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError# 输出:
# Linear(in_features=784, out_features=256, bias=True)
# Linear(in_features=256, out_features=10, bias=True)
# ModuleDict(
#   (act): ReLU()
#   (linear): Linear(in_features=784, out_features=256, bias=True)
#   (output): Linear(in_features=256, out_features=10, bias=True)
# )

(1)和 nn.ModuleList 一样,nn.ModuleDict 实例仅仅是存放了一些模块的字典,并没有定义 forward函数 需要自己定义。
(2)同样,nn.ModuleDict 也与 Python 的 Dict 有所不同,nn.ModuleDict 里的所有模块的参数会被自动添加到整个网络中。


3、总结

  1. SequentialModuleListModuleDict 类都继承自 Module 类。
  2. Sequential 不同,ModuleListModuleDict 并没有定义一个完整的网络,它们只是将不同的模块存放在一起,需要自己定义 forward 函数。
  3. 虽然 Sequential 等类可以使模型构造更加简单,但直接继承 Module 类可以极大地拓展模型构造的灵活性。

相关文章:

【pytorch】ModuleList 与 ModuleDict

ModuleList 与 ModuleDict1、ModuleList2、ModuleDict3、总结1、ModuleList 1)ModuleList 接收一个子模块的列表作为输入,然后也可以类似 List 那样进行 append 和 extend 操作: net nn.ModuleList([nn.Linear(784, 256), nn.ReLU()]) net.append(nn.…...

Hive窗口函数语法规则、窗口聚合函数、窗口表达式、窗口排序函数 - ROW NUMBER 、口排序函数 - NTILE、窗口分析函数

Hive窗口函数 文章目录Hive窗口函数语法规则窗口聚合函数窗口表达式窗口排序函数 - ROW NUMBER窗口排序函数 - NTILE窗口分析函数窗口函数也叫开窗函数、OLAP函数其最大特点:输入值是从SELECT语句的结果集中的一行或多行的“窗口”中获取的。如果函数具有OVER子句&a…...

Go设计模式之函数选项模式

目录引入函数选项模式(functional options pattern)可选参数默认值接口类型版本引入 假设现在需要定义一个包含多个配置项的结构体,具体定义如下: // DoSomethingOption 定义配置项 type DoSomethingOption struct {// a 配置aa…...

ClickHouse 数据类型、函数大小写敏感性

这里写自定义目录标题SELECT *FROM system.data_type_families注意:case_insensitive0 表示大小写敏感。 ClickHouse 的 String 类型、Int 类型、Float 类型、Decimal类型等都是大小写敏感的(case_sensitive0)。关于ClickHouse大小写敏感&am…...

nodejs基于vue 网上商城购物系统

可定制框架:ssm/Springboot/vue/python/PHP/小程序/安卓均可开发 目录 1 绪论 1 1.1课题背景 1 1.2课题研究现状 1 1.3初步设计方法与实施方案 2 1.4本文研究内容 2 2 系统开发环境 4 2. 3 系统分析 6 3.1系统可行性分析 6 3.1.1经济可行性 6 3.1.2技术可行性 6 3.1.3运行可行…...

掌握MySQL分库分表(一)数据库性能优化思路、分库分表优缺点

文章目录MySQL数据库性能优化思路【面试题】不分库分表软优化硬优化分库分表结论分库分表能解决的问题解决数据库本身瓶颈连接数解决系统本身IO、CPU瓶颈分库分表带来的问题问题⼀ 跨节点数据库Join关联查询问题二 分库操作带来的分布式事务问题问题三 执行的SQL排序、翻页、函…...

何为小亚细亚?

一、小亚细亚安纳托利亚(Anatolia),又名小亚细亚或西亚美尼亚,是亚洲西南部的一个半岛,隶属于土耳其。安纳托利亚半岛,北临黑海,西临爱琴海,南濒地中海,东接亚美尼亚高原…...

【mircopython】ESP32配置与烧录版本

下载ESP32的Micropython固件 官方连接https://www.micropython.org/download/esp32/ 看了下描述,上面的是IDF4.x系列编译,下面是IDF3.x系列编译,我们默认选新的 下载安装CP2102驱动 CP210x USB to UART Bridge VCP Drivers - Silicon Labs…...

Yaml:通过extrac进行传参,关联---接口关联封装(基于一个独立YAML的文件)

一:在common包中,封装一个yaml_util的工具包 1. 将获取到的数据,写入到extrac.yaml文件中,通过data def write_extract_yaml(data): 2. 需要用到该参数时,读取extrac.yaml文件中,由于会有多个参数&#x…...

vue - vue中对Vant日历组件(calendar)的二次封装

vue中对vant日历选择器组件实现的的二次封装;主要实现功能如下: 主要功能: 日期区间选择(基本);自定义选择器的底部按钮,添加清除时间操作(slot插槽);指定默认选中的日期…...

详解C++的类型转换

文章目录前言一、C语言中的类型转换二、为什么C需要四种转换三、C强制类型转换3.1 static_cast3.2 reinterpret_cast3.3 const_cast3.4 dynamic_cast四、RTTI总结前言 在C语言的类型转换有一个非常大的坑,有好多悄悄地转换,有时候把我们转换的就蒙了,因为C要兼容C语言,所以C就…...

NLP文本自动生成介绍及Char-RNN中文文本自动生成训练demo

前言 文本自动生成是自然语言处理领域的一个重要研究方向,实现文本自动生成也是人工智能走向成熟的一个重要标志。文本自动生成技术极具应用前景。 例如,文本自动生成技术可以应用于智能问答与对话、机器翻译等系统,实现更加智能和自然的人机…...

Teradata 离场,企业数据分析平台如何应对变革?

近日大数据分析和数仓软件巨头 Teradata(TD)宣布基于中国商业环境的评估,退出在中国的直接运营。TD 是全球最大的专注于大数据分析、数仓和整合营销管理解决方案的供应商之一,其早在 1997 年就进入中国,巅峰期占据半数…...

QWebEngineView-官翻

文章目录特性公共成员函数重实现公共成员函数公有槽函数信号静态公有成员函数保护成员函数重实现保护成员函数额外继承成员详细描述特性文档编制成员函数文档QWebEngineView::**QWebEngineView**([QWidget](../../W/QWidget.md) **parent* Q_NULLPTR)[virtual] QWebEngineView…...

网络安全高级攻击

对分类器的高层次攻击可以分为以下三种类型:对抗性输入:这是专门设计的输入,旨在确保被误分类,以躲避检测。对抗性输入包含专门用来躲避防病毒程序的恶意文档和试图逃避垃圾邮件过滤器的电子邮件。数据中毒攻击:这涉及…...

优思学院:六西格玛中的水平对比方法是什么?

水平对比,就是比较不同事物之间的差异。 这个概念在六西格玛管理中也很重要,也就是我们经常说的标杆管理,经常被用来寻找行业中最好的做法,以帮助组织改进自身的绩效。 在六西格玛管理中,水平对比有三种常见的应用方式…...

UVa 690 Pipeline Scheduling 流水线调度 二进制表示状态 DFS 剪枝

题目链接:Pipeline Scheduling 题目描述: 给定一张5n(1≤n≤20)5\times n(1\le n\le20)5n(1≤n≤20)的资源需求表,第iii行第jjj列的值为’X’表示进程在jjj时刻需要使用使用资源iii,如果为’.则表示不需要使用。你的任务是安排十个…...

【ArcGIS Pro二次开发】(6):工程(Project)的基本操作

在ArcGIS Pro中我们对工程的基本操作一般包括打开、新建、保存等。下面演示在二次开发中如何用代码进行以上操作。 新建一个项目,命名为【ProjectManager】,添加8个按钮,命名为【CreateEmptyProject、CreateProjectByDefault、OpenExProjest…...

Qt OpenGL(四十)——Qt OpenGL 核心模式-雷达扫描效果

提示:本系列文章的索引目录在下面文章的链接里(点击下面可以跳转查看): Qt OpenGL 核心模式版本文章目录 Qt OpenGL(四十)——Qt OpenGL 核心模式-雷达扫描效果 一、场景 上一篇文章介绍了在雷达坐标系中绘制飞行的飞机,其实雷达坐标系应该还有一个效果,就是扫描的效…...

群智能优化算法求解标准测试函数F1~F23之种群动态分布图(视频)

群智能优化算法求解标准测试函数F1的种群动态分布图群智能优化算法求解标准测试函数F2的种群动态分布图群智能优化算法求解标准测试函数F3的种群动态分布图群智能优化算法求解标准测试函数F4的种群动态分布图群智能优化算法求解标准测试函数F5的种群动态分布图群智能优化算法求…...

自动化办公集成工具:一站式解决文档处理难题

1. 项目概述 在当今信息化时代,办公自动化已成为提升工作效率的关键。本文将详细介绍一款基于Python和PyQt5开发的「自动化办公集成工具」,该工具集成了多种常用的办公文档处理功能,包括批量格式转换、文本智能替换、表格数据清洗等,旨在为用户提供一站式的办公自动化解决方…...

Spring Cloud 多机部署与负载均衡实战详解

🧱 一、引言 为什么需要多机部署? 解决单节点性能瓶颈,提升系统可用性和吞吐量 在传统单机部署模式下,系统的所有服务或应用都运行在单一服务器上。这种模式在小型项目或低并发场景中可能足够,但随着业务规模扩大、用…...

Azure 虚拟机端口资源:专用 IP 和公共 IP Azure Machine Learning 计算实例BUG

## 报错无解 找不到Azure ML 计算实例关联的 NSG .env 文件和 ufw status: .env 文件中 EXPOSE_NGINX_PORT8080 是正确的,它告诉 docker-compose.yaml 将 Nginx 暴露在宿主机的 8080 端口。 sudo ufw status 显示 Status: inactive,意味着宿…...

Unity的日志管理类

脚本功能: 1,打印日志到控制台 2,显示日志到UI Text 3,将日志写入本地文件 这对unity开发安卓平台来说很有用 using System; using System.IO; using System.Text; using UnityEngine; using UnityEngine.UI;public class FileLo…...

AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量

AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning 25年3月来自华中科技大学和地平线的论文 OpenAI 的 o1 和 DeepSeek R1 在数学和科学等复杂领域达到甚至超越了人类专家水平,其中强化学习(R…...

Flask音频处理:构建高效的Web音频应用指南

引言 在当今多媒体丰富的互联网环境中,音频处理功能已成为许多Web应用的重要组成部分。无论是音乐分享平台、语音识别服务还是播客应用,都需要强大的音频处理能力。Python的Flask框架因其轻量级和灵活性,成为构建这类应用的理想选择。 本文…...

Spark 之 AQE

个人其他链接 AQE 执行顺序https://blog.csdn.net/zhixingheyi_tian/article/details/125112793 AQE 产生 AQE 的 循环触发点 src/main/scala/org/apache/spark/sql/execution/adaptive/AdaptiveSparkPlanExec.scala override def doExecute(): RDD[InternalRow] = {withFin…...

【C/C++】实现固定地址函数调用

在 C 里,函数地址在程序运行期间通常是固定的,不过在动态链接库(DLL)或者共享库(SO)中,函数地址可能会因为地址空间布局随机化(ASLR)而改变。所以我们想要通过地址直接调…...

跨平台资源下载工具:res-downloader 的使用体验

一款基于 Go Wails 的跨平台资源下载工具,简洁易用,支持多种资源嗅探与下载。res-downloader 一款开源免费的下载软件(开源无毒、放心使用)!支持Win10、Win11、Mac系统.支持视频、音频、图片、m3u8等网络资源下载.支持视频号、小程序、抖音、…...

二元函数可微 切平面逼近 线性函数逼近

二元函数 f ( x , y ) f(x, y) f(x,y) 在某点可微 的含义,可以从几何直观、严格数学定义、与一阶偏导数的关系三个层面来理解: 🔹1. 几何直观上的含义(最易理解) 二元函数 f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 …...