掌握MySQL分库分表(一)数据库性能优化思路、分库分表优缺点
文章目录
- MySQL数据库性能优化思路【面试题】
- 不分库分表
- 软优化
- 硬优化
- 分库分表
- 结论
- 分库分表能解决的问题
- 解决数据库本身瓶颈
- 连接数
- 解决系统本身IO、CPU瓶颈
- 分库分表带来的问题
- 问题⼀ 跨节点数据库Join关联查询
- 问题二 分库操作带来的分布式事务问题
- 问题三 执行的SQL排序、翻页、函数计算问题
- 问题四 数据库全局主键重复问题
- 问题五 容量规划,分库分表后二次扩容问题
- 问题六 分库分表技术选型问题
不能⼀上来就说分库分表!
MySQL数据库性能优化思路【面试题】
根据实际情况分析,两个角度思考:不分库分表、分库分表
不分库分表
软优化
- 数据库参数调优
- 分析慢查询SQL语句,分析执行计划,进行sql改写和程序改写
- 优化数据库索引结构
- 优化数据表结构优化
- 引入NOSQL和程序架构调整
硬优化
提升系统硬件(更快的IO、更多的内存):带宽、CPU、硬盘
分库分表
- 根据业务情况而定,选择合适的分库分表策略(没有通用的策略)
外卖、物流、电商领域 - 先看只分表是否满⾜业务的需求和未来增长
数据库分表能够解决单表数据量很大时,数据查询的效率问题
无法给数据库的并发操作带来效率上的提高,分表的实质还是在⼀个数据库上进行的操作,受数据库IO性能的限制 - 如果单分表满足不了需求,再分库分表⼀起
结论
在数据量及访问压力不是特别大的情况,首先考虑缓存、读写分离、索引技术等方案
如果数据量极⼤,且业务持续增长快,再考虑分库分表方案
分库分表能解决的问题
解决数据库本身瓶颈
连接数
连接数过多时,就会出现‘too many connections’的错误,访问量太大或者数据库设置的最大连接数太小的原因
Mysql默认的最大连接数为100可以修改,⽽mysql服务允许的最⼤连接数为16384
数据库分表可以解决单表海量数据的查询性能问题
数据库分库可以解决单台数据库的并发访问压力问题
解决系统本身IO、CPU瓶颈
- 磁盘读写IO瓶颈,热点数据太多,尽管使用了数据库本身缓存,但是依旧有⼤量IO,导致sql执行速度慢
- 网络IO瓶颈,请求的数据太多,数据传输大,网络带宽不够,链路响应时间变长
- CPU瓶颈,尤其在基础数据量大单机复杂SQL计算,SQL语句执行占用CPU使用率高,也有扫描行数大、锁冲突、锁等待等原因
可以通过 show processlist、show full processlist,发现 CPU 使用率比较高的SQL
常见的对于查询时间长,State 列值是 Sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result,Using filesort 等都是可能有性能问题SQL,清楚相关影响问题的情况可以kill掉
也存在执行时间短,但是CPU占用率⾼的SQL,通过上面命令查询不到,这个时候最好通过执行计划分析explain进行分析
分库分表带来的问题
问题⼀ 跨节点数据库Join关联查询
数据库切分前,多表关联查询,可以通过sql join进行实现分库分表后,数据可能分布在不同的节点上,sql join带来的问题就⽐较麻烦
问题二 分库操作带来的分布式事务问题
操作内容同时分布在不同库中,不可避免会带来跨库事务问题,即分布式事务
问题三 执行的SQL排序、翻页、函数计算问题
分库后,数据分布再不同的节点上, 跨节点多库进行查询时,会出现limit分页、order by排序等问题
而且当排序字段非分片字段时,更加复杂了,要在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序(也会带来更多的CPU/IO资
源损耗)
问题四 数据库全局主键重复问题
常规表的id是使用自增id进行实现,分库分表后,由于表中数据同时存在不同数据库中,如果用自增id,则会出现冲突问题
问题五 容量规划,分库分表后二次扩容问题
业务发展快,初次分库分表后,满足不了数据存储,导致需要多次扩容
问题六 分库分表技术选型问题
市场分库分表中间件相对较多,框架各有各的优势与短板,应该如何选择
相关文章:
掌握MySQL分库分表(一)数据库性能优化思路、分库分表优缺点
文章目录MySQL数据库性能优化思路【面试题】不分库分表软优化硬优化分库分表结论分库分表能解决的问题解决数据库本身瓶颈连接数解决系统本身IO、CPU瓶颈分库分表带来的问题问题⼀ 跨节点数据库Join关联查询问题二 分库操作带来的分布式事务问题问题三 执行的SQL排序、翻页、函…...
何为小亚细亚?
一、小亚细亚安纳托利亚(Anatolia),又名小亚细亚或西亚美尼亚,是亚洲西南部的一个半岛,隶属于土耳其。安纳托利亚半岛,北临黑海,西临爱琴海,南濒地中海,东接亚美尼亚高原…...
【mircopython】ESP32配置与烧录版本
下载ESP32的Micropython固件 官方连接https://www.micropython.org/download/esp32/ 看了下描述,上面的是IDF4.x系列编译,下面是IDF3.x系列编译,我们默认选新的 下载安装CP2102驱动 CP210x USB to UART Bridge VCP Drivers - Silicon Labs…...
Yaml:通过extrac进行传参,关联---接口关联封装(基于一个独立YAML的文件)
一:在common包中,封装一个yaml_util的工具包 1. 将获取到的数据,写入到extrac.yaml文件中,通过data def write_extract_yaml(data): 2. 需要用到该参数时,读取extrac.yaml文件中,由于会有多个参数&#x…...
vue - vue中对Vant日历组件(calendar)的二次封装
vue中对vant日历选择器组件实现的的二次封装;主要实现功能如下: 主要功能: 日期区间选择(基本);自定义选择器的底部按钮,添加清除时间操作(slot插槽);指定默认选中的日期…...
详解C++的类型转换
文章目录前言一、C语言中的类型转换二、为什么C需要四种转换三、C强制类型转换3.1 static_cast3.2 reinterpret_cast3.3 const_cast3.4 dynamic_cast四、RTTI总结前言 在C语言的类型转换有一个非常大的坑,有好多悄悄地转换,有时候把我们转换的就蒙了,因为C要兼容C语言,所以C就…...
NLP文本自动生成介绍及Char-RNN中文文本自动生成训练demo
前言 文本自动生成是自然语言处理领域的一个重要研究方向,实现文本自动生成也是人工智能走向成熟的一个重要标志。文本自动生成技术极具应用前景。 例如,文本自动生成技术可以应用于智能问答与对话、机器翻译等系统,实现更加智能和自然的人机…...
Teradata 离场,企业数据分析平台如何应对变革?
近日大数据分析和数仓软件巨头 Teradata(TD)宣布基于中国商业环境的评估,退出在中国的直接运营。TD 是全球最大的专注于大数据分析、数仓和整合营销管理解决方案的供应商之一,其早在 1997 年就进入中国,巅峰期占据半数…...
QWebEngineView-官翻
文章目录特性公共成员函数重实现公共成员函数公有槽函数信号静态公有成员函数保护成员函数重实现保护成员函数额外继承成员详细描述特性文档编制成员函数文档QWebEngineView::**QWebEngineView**([QWidget](../../W/QWidget.md) **parent* Q_NULLPTR)[virtual] QWebEngineView…...
网络安全高级攻击
对分类器的高层次攻击可以分为以下三种类型:对抗性输入:这是专门设计的输入,旨在确保被误分类,以躲避检测。对抗性输入包含专门用来躲避防病毒程序的恶意文档和试图逃避垃圾邮件过滤器的电子邮件。数据中毒攻击:这涉及…...
优思学院:六西格玛中的水平对比方法是什么?
水平对比,就是比较不同事物之间的差异。 这个概念在六西格玛管理中也很重要,也就是我们经常说的标杆管理,经常被用来寻找行业中最好的做法,以帮助组织改进自身的绩效。 在六西格玛管理中,水平对比有三种常见的应用方式…...
UVa 690 Pipeline Scheduling 流水线调度 二进制表示状态 DFS 剪枝
题目链接:Pipeline Scheduling 题目描述: 给定一张5n(1≤n≤20)5\times n(1\le n\le20)5n(1≤n≤20)的资源需求表,第iii行第jjj列的值为’X’表示进程在jjj时刻需要使用使用资源iii,如果为’.则表示不需要使用。你的任务是安排十个…...
【ArcGIS Pro二次开发】(6):工程(Project)的基本操作
在ArcGIS Pro中我们对工程的基本操作一般包括打开、新建、保存等。下面演示在二次开发中如何用代码进行以上操作。 新建一个项目,命名为【ProjectManager】,添加8个按钮,命名为【CreateEmptyProject、CreateProjectByDefault、OpenExProjest…...
Qt OpenGL(四十)——Qt OpenGL 核心模式-雷达扫描效果
提示:本系列文章的索引目录在下面文章的链接里(点击下面可以跳转查看): Qt OpenGL 核心模式版本文章目录 Qt OpenGL(四十)——Qt OpenGL 核心模式-雷达扫描效果 一、场景 上一篇文章介绍了在雷达坐标系中绘制飞行的飞机,其实雷达坐标系应该还有一个效果,就是扫描的效…...
群智能优化算法求解标准测试函数F1~F23之种群动态分布图(视频)
群智能优化算法求解标准测试函数F1的种群动态分布图群智能优化算法求解标准测试函数F2的种群动态分布图群智能优化算法求解标准测试函数F3的种群动态分布图群智能优化算法求解标准测试函数F4的种群动态分布图群智能优化算法求解标准测试函数F5的种群动态分布图群智能优化算法求…...
vue-axios封装与使用
一、简介 Axios 是一个基于 promise 网络请求库,作用于node.js 和浏览器中。 这是一个使用率很高的前端网络请求库,几乎所有的前端项目都会使用,本文主要介绍的是如何在vue项目中使用axios,并对其进行全面的封装。 注意&#x…...
重要节点排序方法
文章目录研究背景提前约定基于节点近邻的排序方法度中心性(degree centrality, DC)半局部中心性(semilocal centrality, SLC)k-壳分解法基于路径排序的方法离心中心性 (Eccentricity, ECC)接近中心性 (closeness centrality, CC)K…...
【2.20】动态规划 +项目 + 存储引擎
01背包问题 现有一容量为w的背包,有3个物品,每个物品重量不同,价值不同,问,怎样装才能价值最大化? 明确dp数组含义和下标含义:dp[j]表示当前背包的最大价值。j表示背包容量。递推公式…...
触摸屏单个按键远程控制led
一、硬件 arduino2块 淘晶驰串口屏7寸增强型带外壳1块,不支持视频音频 nRF24L0模块2块 扩展板2块 跳线若干 面包板1块 led灯1个 电阻二极管若干 下载线两个 usb转串口1个 二、实验内容 一个arduino作为触摸屏的控制器,接收触摸屏双向开关的信号,同时通过nRF24L01发送“open”…...
JVM12 class文件
1. Class 文件结构 1.1. Class 字节码文件结构 类型名称说明长度数量魔数u4magic魔数,识别Class文件格式4个字节1版本号u2minor_version副版本号(小版本)2个字节1u2major_version主版本号(大版本)2个字节1常量池集合u2constant_pool_count常量池计数器2个字节1cp_infoconstan…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
