时空数据挖掘精选23篇论文解析【AAAI 2023】
今天和大家分享时空数据挖掘方向的资料。
时空数据挖掘是人工智能技术的重要分支,是一种采用人工智能和大数据技术对城市时空数据进行分析与挖掘的方法,旨在挖掘时空数据,理解城市本质,解决城市问题。
目前,时空数据挖掘广泛应用于交通运输、地质灾害监测与预防、气象研究、竞技体育、犯罪分析、公共卫生与医疗及社交网络应用等领域。
本次分享是今年AAAI 2023 顶会中时空数据挖掘相关的论文,目前共整理了23篇,有缺漏也欢迎大家评论区补充哈!
AAAI人工智能会议在前文中有过介绍,含金量有目共睹,想了解最佳论文详情的同学可以点蓝字传送。
论文原文以及源代码文末领取!!!
1. GMDNet: A Graph-based Mixture Density Network for Estimating Packages' Multimodal Travel Time Distribution
标题:基于图的混合密度网络用于估计包裹的多模态旅行时间分布
作者:Xiaowei Mao, Huaiyu Wan, Haomin Wen, Fan Wu, Jianbin Zheng, Yuting Qiang, Shengnan Guo, Lixia Wu, Haoyuan Hu, Youfang Lin
内容:该文提出了一个基于图的混合密度网络模型,来预测物流网络中包裹的多模旅行时间分布,充分利用了图神经网络和混合密度网络的优势,采用期望最大化框架进行训练,在两个真实数据集上验证了其优越性。
2. Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction
标题:交通流量预测的时空自监督学习
作者:Jiahao Ji, Jingyuan Wang, Chao Huang, Junjie Wu, Boren Xu, Zhenhe Wu, Junbo Zhang, Yu Zheng
内容:该文提出了一个空间时间自监督学习的交通流预测框架,通过自适应的数据增强和辅助的自监督学习任务,增强了模型对空间和时间异质性的表示能力,从而实现了对不同时段和区域的稳健交通流预测。
3. Easy Begun Is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout
标题:轻松的开端是成功的一半:利用ST-Curriculum Dropout进行时空图建模
作者:Hongjun Wang, Jiyuan Chen, Tong Pan, Zipei Fan, Xuan Song, Renhe Jiang, Lingyu Zhang, Yi Xie, Zhongyi Wang, Boyuan Zhang
内容:该文提出了一个空间时间课程舍弃策略,通过评估每个节点在高维特征空间中的学习难度,先让模型学习简单的空间时间关系,然后逐渐加入难样本,使模型逐步适应数据的空间时间异质性,从而提高了模型的表达能力和泛化性能。
4. AutoSTL: Automated Spatio-Temporal Multi-Task Learning
标题:AutoSTL:自动化的时空多任务学习
作者:Zijian Zhang, Xiangyu Zhao, Hao Miao, Chunxu Zhang, Hongwei Zhao, Junbo Zhang
内容:该文提出了一个自动化的空间时间多任务联合学习方法AutoSTL,通过可扩展的网络结构、共享模块和特征融合机制来建模复杂的空间时间依赖关系和不同任务之间的内在关联,并实现了对网络操作和融合权重的自动分配。
5. PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction
标题:PDFormer:考虑传播延迟的动态长程变换器用于交通流量预测
作者:Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, Jingyuan Wang
内容:该文提出了一个传播迟滞感知的动态长程transformer网络PDFormer用于交通流预测,通过空间自注意力模块捕获动态空间依赖,图掩码矩阵Highlight短程和长程空间依赖,并设计了交通延迟感知的特征变换模块来建模空间信息传播的时间延迟,在多个数据集上实现了state-of-the-art的性能。
6. Causal Conditional Hidden Markov Model for Multimodal Traffic Prediction
标题:因果条件隐藏马尔可夫模型用于多模态交通预测
作者:Yu Zhao, Pan Deng, Junting Liu, Xiaofeng Jia, Mulan Wang
内容:该文从观测生成原理的视角分析了影响多模交通流生成的物理概念,并提出了一个因果条件隐马尔可夫模型CCHMM来预测多模交通流,该模型通过后验网络解耦出因变量的因果表示,采用因果传播模块挖掘因果关系,并通过互监督的训练增强了模型的可识别性,实验表明CCHMM可以有效解耦概念的因果表示、识别因果关系,并准确预测多模交通流。
7. Continuous Trajectory Generation Based on Two-Stage GAN
标题:基于两阶段GAN的连续轨迹生成
作者:Wenjun Jiang, Wayne Xin Zhao, Jingyuan Wang, Jiawei Jiang
内容:该文提出了一个两阶段的生成对抗框架TS-TrajGen来生成连续的道路网络上的轨迹,它通过生成器整合了A*算法的人 mobility假设来学习人的移动行为,并在判别器中结合顺序奖励和mobility yaw奖励来增强生成器的效果。另外,该方法提出了一个两阶段的生成过程来克服现有随机生成过程的缺点。
8. GRLSTM: Trajectory Similarity Computation with Graph-Based Residual LSTM
标题:GRLSTM:基于图结构残差LSTM的轨迹相似性计算
作者:Silin Zhou, Jing Li, Hao Wang, Shuo Shang, Peng Han
内容:该文提出了一个新的框架GRLSTM用于计算道路网络上的轨迹相似性,该框架结合了知识图谱嵌入(KGE)、图神经网络(GNN)和残差网络的多层LSTM,构建点知识图谱学习点之间的多关系,使用KGE学习点和关系的嵌入来构建点融合图,用GNN学习点融合图的拓扑结构,最后用残差LSTM学习轨迹嵌入。为进一步提高嵌入的准确性和鲁棒性,引入了两个基于邻居的点损失函数。
9. Contrastive Pre-training with Adversarial Perturbations for Check-in Sequence Representation Learning
标题:对抗扰动对比预训练用于签到序列表示学习
作者:Letian Gong, Youfang Lin, Shengnan Guo, Yan Lin,Tianyi Wang, Erwen Zheng, Zeyu Zhou, Huaiyu Wan
内容:该文提出了一个对抗扰动的对比预训练模型CACSR用于签到序列的表示学习,首先设计了空间时间增强模块在潜空间扰动签到序列的空间时间特征来减轻手动数据增强的压力,其次通过对抗训练生成“困难”的正负样本对构成有效的对比预训练目标,这两点鼓励模型学习签到序列的高级空间时间模式和语义而忽略无关细节。在三个真实数据集的两种下游任务上表明该模型优于当前最先进的预训练方法和端到端模型。
10. Spatio-temporal Neural Structural Causal Models for Bike Flow Prediction
标题:基于时空神经结构因果模型的自行车流量预测
作者:Pan Deng、Yu Zhao、Junting Liu、Xiaofeng Jia、Mulan Wang
内容:该文从因果角度出发,针对单车系统的单车流预测问题,提出了空间时间神经结构因果模型STNSCM,首先建立因果图描述交通预测,分析输入数据、上下文条件、空间时间状态和预测结果之间的因果关系;然后应用前门准则消除特征提取过程中的混杂偏差;最后提出反事实表示推理模块,将事实场景下的空间时间状态推断到未来的反事实场景,以提高预测性能。实验表明该模型优于现有方法,特别是对外部环境引起的波动更具鲁棒性。
11. Next POI Recommendation with Dynamic Graph and Explicit Dependency
标题:利用动态图和显式依赖进行下一个兴趣点推荐
作者:Feiyu Yin, Yong Liu, Zhiqi Shen, Lisi Chen, Shuo Shang, Peng Han
内容:该文针对下一兴趣点POI推荐问题,提出了基于序列的邻域搜索与预测模型SNPM,其中使用RotatE知识图谱嵌入和Eigenmap方法从疏散的签到数据中提取POI之间的关系构建相似图,然后通过聚合相似POI增强模型对POI通用特征的表达,同时构建基于序列的动态邻域图寻找相似邻域,并开发了一个多步依赖预测模型MSDP来显式利用前序POI信息进行下一POI的预测。
12. Scalable Spatiotemporal Graph Neural Networks
标题:可扩展的时空图神经网络
作者:Andrea Cini, Ivan Marisca, Filippo Maria Bianchi, Cesare Alippi
内容:该文提出一种可扩展的架构,用于预测空间时间序列的神经预测,利用随机循环神经网络高效编码输入时间序列的历史,获取封装多尺度时间动态的高维状态表示,然后利用图邻接矩阵的不同幂将这些表示沿空间维度传播,生成包含丰富空间时间特征的节点嵌入,这些嵌入可以提前以无监督方式预计算,然后馈入前馈解码器进行多尺度空间时间表示到预测的映射,训练可以通过采样节点嵌入并行化而不破坏依赖关系,因此可扩展到大型网络。
13. Learning Decomposed Spatial Relations for Multi-Variate Time-Series Modeling
标题:学习分解的空间关系,用于多变量时间序列建模
作者:Yuchen Fang, Kan Ren, Caihua Shan, Yifei Shen, You Li, Weinan Zhang, Yong Yu, Dongsheng Li
内容:该文针对多变量时间序列数据建模问题,提出了一种细粒度建模和利用变量间空间相关性的框架。通过分析真实数据集的统计特性,首先识别出空间相关图的一种通用分解,即隐藏的空间相关可以分解为先验部分和动态部分,前者适用于所有样本,后者在样本间变化,需要建立不同的图来建模这些关系。为了更好地协调这两种关系图的学习,提出了一个min-max学习范式,既规范不同动态图的公共部分,又保证样本间的空间可区分性。
14. c-NTPP: Learning Cluster-Aware Neural Temporal Point Process
标题:c-NTPP:学习集群感知的神经时序点过程
作者:Fangyu Ding, Junchi Yan, Haiyang Wang
内容:该工作针对连续时间空间中的事件序列建模问题,观察到许多事件数据表现出事件之间的稀疏相关性聚类模式,而现有的神经 TPP 模型中历史编码器常用 RNN 或 Transformer 等,很少显式考虑这种特征。为此,该文提出了 c-NTPP 模型,使用顺序变分自动编码器框架推断每个事件所属的潜在聚类,并设计了基于聚类的注意力机制学习每个聚类并聚合表示,从而获得每个事件的最终表示。
15. Trafformer: Unify Time and Space in Traffc Prediction
标题:Trafformer:在交通预测中统一时间和空间
作者:Di Jin, Jiayi Shi , Rui Wang , Yawen Li*, Yuxiao Huang, Yu-Bin Yang
内容:该工作针对交通流量预测问题,提出Trafformer模型,在transformer式模型中统一处理空间和时间信息,通过空时自注意力机制捕捉复杂的时空依赖,并使用生成式解码器一次性预测多个时间步,还设计了降低计算复杂度的变体。在交通数据集上实验表明,该模型优于现有基准,为解决时空交通预测问题提供了有希望的方向。
16. Spatio-Temporal Meta-Graph Learning for Traffic Forecasting
标题:时空元图学习用于交通预测
作者:Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan Song, Shintaro Fukushima, Toyotaro Suzumura
内容:该工作针对交通流量预测问题,提出了空间-时间元图学习方法来学习交通数据的时空图结构,并将其集成到元图卷积循环网络中,形成MegaCRN模型;在两个基准数据集和东京高速道路数据集上的评估显示其优于当前最先进的方法,定性分析也证明了模型可以明确区分不同模式的道路链和时间槽,并对异常交通情况具有强健的自适应能力。
17. Ising-Traffc: Using Ising Machine Learning to Predict Traffc Congestion under Uncertainty
标题:Ising-Traffic:利用伊辛机器学习在不确定性下预测交通拥堵
作者:Zhenyu Pan, Anshujit Sharma, Jerry Yao-Chieh Hu, Zhuo Liu, Ang Li, Han Liu, Michael Huang, Tong Geng
内容:该工作通过设计双模型框架Ising-Traffc来解决交通拥堵预测中的准确性和实时性难题,它利用Ising模型的强表达能力和Ising机的强计算能力,打破了算法复杂度和计算效率之间的传统权衡关系,实现了比最新方法更高的精度和更低的延迟。具体来说,Ising-Traffc将拥堵预测问题建模为两个Ising模型:Reconstruct-Ising在Ising机上运行来准确处理不确定性,Predict-Ising在传统处理器上运行来精确预测未来拥堵,计算需求只有现有解决方案的1.8%。
18. Hierarchical Contrastive Learning for Temporal Point Processes
标题:层次对比学习用于时序点过程
作者:Qingmei Wang, Minjie Cheng, Shen Yuan, Hongteng Xu
内容:该工作针对时点过程模型的最大似然估计易过拟合的问题,提出了一种层次对比学习正则方法,它在事件级别和序列级别联合进行对比噪声估计,通过模型引导的稀疏过程高效生成正负样本序列,最大化其对立似然以正则化最大似然,实验表明可一致改善各时点过程模型的泛化能力。
19. SafeLight: A Reinforcement Learning Method toward Collision-Free Traffc Signal Control
标题:SafeLight:一种朝向无碰撞交通信号控制的强化学习方法
作者:Wenlu Du, Junyi Ye, Jingyi Gu, Jing Li, Hua Wei, Guiling Wang
内容:该工作首次将路面安全标准引入强化学习交通信号控制以确保安全性,提出了Safelight残差强化学习方法,采用多目标损失函数和奖励塑形等技术,在合成和真实基准数据集上实验表明,该方法可以明显减少事故发生率的同时提高交通流动性。
20. Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction
标题:时空图神经点过程用于交通拥堵事件预测
作者:Guangyin Jin, Lingbo Liu, Fuxian Li, Jincai Huang
内容:该工作针对交通拥堵事件预测问题,提出了空间-时间图神经点过程框架STGNPP,先通过空间-时间图学习模块从历史交通状态和路网中捕获长程空间-时间依赖性,再用门控循环单元模型拥堵演变模式,并通过周期门控机制改进点过程的强度函数来利用周期信息,从而同时预测下个拥堵的发生时间和持续时间。
21. City-scale Pollution Aware Traffic Routing by Sampling Max Flows using MCMC
标题:基于MCMC采样最大流的城市尺度污染感知交通路径规划
作者:Shreevignesh Suriyanarayanan, Praveen Paruchuri, Girish Varma
内容:该工作针对城市地区交通造成的严重空气污染问题,提出一种污染感知路由策略来实现避免任何区域极端污染、使通行时间短、有效利用道路容量三个目标的平衡。该方法基于采样理论,构建了第一个可以对平面图的最大流整数解进行采样并具有通行长度概率依赖性理论保证的马尔可夫链。该策略在真实世界路网上进行仿真表明,与其他方法相比,在全球各大城市地图上可以显著降低污染严重区域。
22. WaveForM: Graph Enhanced Wavelet Learning for Long Sequence Forecasting of Multivariate Time Series
标题:WaveForM:用于多变量时间序列的长序列预测的图增强小波学习
作者:Fuhao Yang, Xin Li, Min Wang, Hongyu Zang, Wei Pang, Mingzhong Wang
内容:该工作提出了WaveForM,这是一种基于小波和图的多变量时间序列长序列预测框架,它先利用小波变换表示时间序列,同时获取时域和频域特征,再通过学习全局图表示时间序列变量之间的关系,并用扩张卷积和图卷积在小波域进行预测,在5个真实世界数据集上的长序列预测实验表明,该方法相比每个数据集的最强基准都取得了显著提升。
23. PateGail: A Privacy-Preserving Mobility Trajectory Generator with Imitation Learning
标题:PateGail:一种具有模仿学习的隐私保护移动轨迹生成器
作者:Huandong Wang, Changzheng Gao, Yuchen Wu, Depeng Jin, Lina Yao, Yong Li
内容:该工作提出了PateGail,这是一种用于生成人类移动轨迹的保护隐私的模仿学习模型,它利用生成对抗模仿学习来模拟人的决策过程,并基于分布式存储在用户设备上的移动数据进行集成训练,其中个人判别器本地区分真实和生成轨迹;在训练过程中,只共享生成轨迹及其奖励,并采用扰动机制来保证差分隐私;另外,还设计了奖励聚合机制来更好地模拟人的决策,理论证明该模型在聚合奖励下最大化用户折扣总奖励的下界。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“时空数据”获取全部论文+代码合集
码字不易,欢迎大家点赞评论收藏!
相关文章:

时空数据挖掘精选23篇论文解析【AAAI 2023】
今天和大家分享时空数据挖掘方向的资料。 时空数据挖掘是人工智能技术的重要分支,是一种采用人工智能和大数据技术对城市时空数据进行分析与挖掘的方法,旨在挖掘时空数据,理解城市本质,解决城市问题。 目前,时空数据…...

MySQL 存储过程和函数
目录 一、存储过程和函数概述 二、创建存储过程和函数 1、创建存储过程 2、创建存储函数 三、查看/调用储存过程和函数 1、查看储存过程/函数 2、调用储存过程/函数 四、修改/删除存储过程和函数 1、修改存储过程和函数 2、删除存储过程和函数 五、练习 一、存储过…...

ClickHouse 使用
CREATE DATABASE test on cluster ck_00_1repl; DROP TABLE local_t_ordt_order on cluster ck_00_1repl; 创建本地 local 表 CREATE TABLE test.local_order_db_t_order on cluster ck_00_1repl ( forder_id_hash String, forder_id String, fuid Int32, forder_type Int32…...

通过SSH协议连接远程服务器(Linux)
能够连接远程服务器的软件有很多,例如MobaXterm、Xshell、PuTTY、SecureCRT等。 以下是在Windows系统上通过SSH协议来连接Linux系统的操作过程: 在Linux系统上打开终端,输入ifconfig命令查看主机名;如果无法执行该命令ÿ…...

IPC之System V vs POSIX
文章目录 IPC示例共享内存POSIX shmSystem V shm IPC 当谈到IPC(Inter-Process Communication,进程间通信)时,它是指不同进程之间进行数据交换和通信的机制。 它允许在操作系统中运行的不同进程之间传输数据,这些进程…...

视频汇聚/视频云存储/视频监控管理平台EasyCVR安全检查的相关问题及解决方法
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

分布式定时任务
分布式定时任务 背景xxl-job实战代码背景 在大多数业务场景中,非及时的数据同步,或者数据处理,都需要定时任务来处理 xxl-job 选型1.社区活跃度与文档完整度高 2.发迅速、学习简单、轻量级、易扩展 3.功能支持多 4.使用该框架的公司多,现登记有600多家公司已经应用该框架…...

国标GB28181视频平台EasyGBS视频监控平台无法播放,抓包返回ICMP排查过程
国标GB28181视频平台EasyGBS是基于国标GB/T28181协议的行业内安防视频流媒体能力平台,可实现的视频功能包括:实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。国标GB28181视频监控平台部署简单、可拓展性强,支持将…...

计算机毕设 基于深度学习的图像超分辨率重建 - opencv python cnn
文章目录 0 前言1 什么是图像超分辨率重建2 应用场景3 实现方法4 SRResNet算法原理5 SRCNN设计思路6 代码实现6.1 代码结构组织6.2 train_srresnet6.3 训练效果 7 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少…...

基于Java+SpringBoot+Vue前后端分离科研工作量管理系统设计和实现
博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…...

Java复习-17-Object类
Object 类 功能:可以解决参数的统一问题特点:Java中所有的类型都是 Object 类的子类(包括自定义的类)。运用:如果一个程序的方法要求可以接收所有类的对象的时候就可以利用 Object 实现处理。 toString() 方法 可以…...

数据结构--树4.2.4(树、森林即二叉树的相互转换(仅供参考))
目录 一、树转换成二叉树步骤 二、森林转换成二叉树 三、二叉树到树、森林的转换 一、树转换成二叉树步骤 分两个步骤: 1、在树中所有的兄弟结点之间加一连线。 2、对每个结点,除了保留与其长子(最左边)的连线外,去…...

MyBatis-Plus 总结
MyBatis-Plus简介 官网:https://baomidou.com/ GitHub:https://github.com/baomidou/mybatis-plus Gitee:https://gitee.com/baomidou/mybatis-plus 简介 MyBatis-Plus (简称 MP)是一个 MyBatis的增强工具&#x…...

【CSS】轮播图案例开发 ( 基本设置 | 子绝父相 | 浏览器水平居中 | 圆角设置 | 绝对定位居中设置 )
代码示例 : <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Banner 轮播</title><style>/* 取消浏览器或者其它标签的默认的内外边距 */* {margin: 0;padding: 0;}/* 取消列表样式 主要是…...

leetcode做题笔记111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 思路一:递归 int minDepth(struct TreeNode* root){if(!root)return 0;int leftminDepth(root->le…...

ubuntu安装Google Chrome 浏览器和ChromeDriver
要在Ubuntu上安装Google Chrome浏览器和ChromeDriver,可以按照以下步骤操作: 1. 安装Google Chrome 浏览器 下载Google Chrome 的最新版本。 wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb使用dpkg安装下载的deb包。…...

猫头虎博主赠书一期:《Kubernetes原生微服务开发》
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...

QtC++ 设计模式(四)——策略模式
策略模式 序言理解源码 序言 还是参考的菜鸟教程,会C的还是看C的方式来得舒服。 . 理解 使用符合UML规范的便于理解和回忆,接口其实就是普通的基类 . 源码 strategy.h /// 策略 class Strategy { public:virtual ~Strategy();/*** brief 计算* p…...

LVS集群和分布式概念
LVS 一.集群和分布式概念 1.1 集群 在计算机领域,集群早在 1960 年就出现,随着互联网和计算机相关技术的发展,现在 集群这一技术已经在各大互联网公司普及。 1.1.1 集群概念 计算机集群指一组通过计算机网络连接的计算机,它们…...

javafx应用程序线程异常Exception in thread “JavaFx Application Thread“
前几天用javafx做小桌面应用程序出现了一个问题: 反复检查,最终确定报错的原因是UI刷新频率过快导致的 javafx提供了Platform.runLater用于解决该问题: Platform.runLater(new Runnable() {Overridepublic void run(){//用Platform.runLate…...

大漠插件7.2336
工具名称:大漠插件7.2336 更新时间2023-08-28更新内容/v7.23361. YOLO综合工具标记逻辑优化. 更加的方便2. YOLO综合工具增加了默认类. 对于多个同类可以不用每次都进行选择.3. YOLO综合工具增加可以对模型的输入大小进行修改4. YOLO的dmx格式变更.新老版本不混用. 新的dmx格式…...

5年测试,面试结束后被HR发朋友圈怼了..(心塞)
前一阵子向朋友诉苦,我在参加字节跳动面试的时候被面试官怼得哑口无言,场面让我一度十分尴尬。 印象最深的就是下面几个问题: 根据你以前的工作经验和学习到的测试技术,说说你对质量保证的理解? 非关系型数据库和关系型…...

基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 SVM 4.2 PSO-SVM 4.3 GA-PSO-SVM 5.算法完整程序工程 1.算法运行效果图预览 SVM: PSO-SVM: GA-PSO-SVM: 以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》 2.…...

开发者必备:推荐将闲置iPad Pro打造为编程工具,使用VS Code编写代码
文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. iPad通过软件远程vscode6.1 创建TCP隧道 7. ipad远…...

c++,标准库std中全局函数 _Destroy_in_place(...)的分析
(1)该函数的定义和位置如下: 可见,传入形参为某种类型的引用,该函数会执行形参的析构函数,还可以有效解决数组的连续析构。很强大的函数。 (2)疑问是,若形参是指针类型…...

java:Tomcat
文章目录 背景服务器web 服务器服务资源的分类服务器软件的分类nginx 和 tomact总结 安装Tomcatbrew安装官网压缩包安装IDEA集成IDEA插件 说明 背景 在讲 Tomcat 是啥之前,我们先来了解一些概念。 服务器 可以理解为一个高性能的电脑,但是这个电脑现在…...

US-P2F-R-C双线圈插头式比例阀放大器
US-P2F-R-C型插头式安装比例放大器控制不带电反馈的单或双比例电磁铁的比例阀,如比例插装阀、比例方向阀、比例压力阀、比例流量阀、比例叠加阀等,带数显区显示及当前参数,如指令、电流、上下斜坡、颤振频率等,指令类型兼容0-10V、…...

clickhouse一次异常排查记录
clickhouse中报错 关闭了自启动,删了status,重启了clickhouse还是报错 1,排查定时执行的脚本日志(每小时第5分钟执行) INSERT INTO quality0529.previously_reported_urls (url) SELECT url FROM quality0529.hourly_…...

Python 数据可视化:玩转 Matplotlib 的散点图、线形图、饼图和热力图
前言 我们来探讨其他几种常用的数据可视化图形:散点图、线形图、饼图和热力图。 可视化图形的优点~ 数据可视化图表是数据分析和演示的重要手段,它有以下优点: 快速理解信息:通过图表,人们可以迅速捕捉到数据的主要模式和趋势,而不需要详细查看每个数据点。 增强记忆:…...

基于python+pyqt实现opencv银行卡身份证等识别
效果展示 识别结果 查看处理过程 历史记录 完整演示视频: 无法粘贴视频........ 完整代码链接 视频和代码都已上传百度网盘,放在主页置顶文章...