数据分析作业四-基于用户及物品数据进行内容推荐
## 导入支持库
import pandas as pd
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
import numpy as np
from sklearn.neighbors import NearestNeighbors
from scipy.spatial.distance import correlation
from sklearn.metrics.pairwise import pairwise_distances
import ipywidgets as widgets
from IPython.display import display, clear_output
from contextlib import contextmanager
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import os, sys
import re
import seaborn as sns
## 加载数据集并检查书籍,用户和评级数据集的形状
books = pd.read_csv('F:\\data\\bleeding_data\\BX-Books.csv',sep=None,encoding="latin-1")
books.columns = ['ISBN', 'bookTitle', 'bookAuthor','yearOfPublication', 'publisher','imageUrlS', 'imageUrlM', 'imageUrlL']users = pd.read_csv('F:\\data\\bleeding_data\\BX-Users.csv',sep=None, encoding="latin-1")
users.columns = ['userID', 'Location', 'Age']ratings = pd.read_csv('F:\\data\\bleeding_data\\BX-Book-Ratings.csv',sep=None, encoding="latin-1")
ratings.columns = ['userID', 'ISBN', 'bookRating']print (books.shape)
print (users.shape)
print (ratings.shape)
(271360, 8)
(278858, 3)
(1149780, 3)
## 一、图书数据集
books.head()
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | imageUrlS | imageUrlM | imageUrlL | |
---|---|---|---|---|---|---|---|---|
0 | 0195153448 | Classical Mythology | Mark P. O. Morford | 2002 | Oxford University Press | http://images.amazon.com/images/P/0195153448.0... | http://images.amazon.com/images/P/0195153448.0... | http://images.amazon.com/images/P/0195153448.0... |
1 | 0002005018 | Clara Callan | Richard Bruce Wright | 2001 | HarperFlamingo Canada | http://images.amazon.com/images/P/0002005018.0... | http://images.amazon.com/images/P/0002005018.0... | http://images.amazon.com/images/P/0002005018.0... |
2 | 0060973129 | Decision in Normandy | Carlo D'Este | 1991 | HarperPerennial | http://images.amazon.com/images/P/0060973129.0... | http://images.amazon.com/images/P/0060973129.0... | http://images.amazon.com/images/P/0060973129.0... |
3 | 0374157065 | Flu: The Story of the Great Influenza Pandemic... | Gina Bari Kolata | 1999 | Farrar Straus Giroux | http://images.amazon.com/images/P/0374157065.0... | http://images.amazon.com/images/P/0374157065.0... | http://images.amazon.com/images/P/0374157065.0... |
4 | 0393045218 | The Mummies of Urumchi | E. J. W. Barber | 1999 | W. W. Norton & Company | http://images.amazon.com/images/P/0393045218.0... | http://images.amazon.com/images/P/0393045218.0... | http://images.amazon.com/images/P/0393045218.0... |
## url不需要分析,进行删除
books.drop(['imageUrlS', 'imageUrlM', 'imageUrlL'],axis=1,inplace=True)
books.head()
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
0 | 0195153448 | Classical Mythology | Mark P. O. Morford | 2002 | Oxford University Press |
1 | 0002005018 | Clara Callan | Richard Bruce Wright | 2001 | HarperFlamingo Canada |
2 | 0060973129 | Decision in Normandy | Carlo D'Este | 1991 | HarperPerennial |
3 | 0374157065 | Flu: The Story of the Great Influenza Pandemic... | Gina Bari Kolata | 1999 | Farrar Straus Giroux |
4 | 0393045218 | The Mummies of Urumchi | E. J. W. Barber | 1999 | W. W. Norton & Company |
## books.dtypes
books.dtypes
ISBN object
bookTitle object
bookAuthor object
yearOfPublication object
publisher object
dtype: object
## 现在检查属性的唯一值
books.bookTitle.unique()
array(['Classical Mythology', 'Clara Callan', 'Decision in Normandy', ...,'Lily Dale : The True Story of the Town that Talks to the Dead',"Republic (World's Classics)","A Guided Tour of Rene Descartes' Meditations on First Philosophy with Complete Translations of the Meditations by Ronald Rubin"],dtype=object)
books.yearOfPublication.unique()
array(['2002', '2001', '1991', '1999', '2000', '1993', '1996', '1988','2004', '1998', '1994', '2003', '1997', '1983', '1979', '1995','1982', '1985', '1992', '1986', '1978', '1980', '1952', '1987','1990', '1981', '1989', '1984', '0', '1968', '1961', '1958','1974', '1976', '1971', '1977', '1975', '1965', '1941', '1970','1962', '1973', '1972', '1960', '1966', '1920', '1956', '1959','1953', '1951', '1942', '1963', '1964', '1969', '1954', '1950','1967', '2005', '1957', '1940', '1937', '1955', '1946', '1936','1930', '2011', '1925', '1948', '1943', '1947', '1945', '1923','2020', '1939', '1926', '1938', '2030', '1911', '1904', '1949','1932', '1928', '1929', '1927', '1931', '1914', '2050', '1934','1910', '1933', '1902', '1924', '1921', '1900', '2038', '2026','1944', '1917', '1901', '2010', '1908', '1906', '1935', '1806','2021', '2012', '2006', 'DK Publishing Inc', 'Gallimard', '1909','2008', '1378', '1919', '1922', '1897', '2024', '1376', '2037'],dtype=object)
books.loc[books.yearOfPublication == 'DK Publishing Inc',:]
books.yearOfPublication.unique()
array(['2002', '2001', '1991', '1999', '2000', '1993', '1996', '1988','2004', '1998', '1994', '2003', '1997', '1983', '1979', '1995','1982', '1985', '1992', '1986', '1978', '1980', '1952', '1987','1990', '1981', '1989', '1984', '0', '1968', '1961', '1958','1974', '1976', '1971', '1977', '1975', '1965', '1941', '1970','1962', '1973', '1972', '1960', '1966', '1920', '1956', '1959','1953', '1951', '1942', '1963', '1964', '1969', '1954', '1950','1967', '2005', '1957', '1940', '1937', '1955', '1946', '1936','1930', '2011', '1925', '1948', '1943', '1947', '1945', '1923','2020', '1939', '1926', '1938', '2030', '1911', '1904', '1949','1932', '1928', '1929', '1927', '1931', '1914', '2050', '1934','1910', '1933', '1902', '1924', '1921', '1900', '2038', '2026','1944', '1917', '1901', '2010', '1908', '1906', '1935', '1806','2021', '2012', '2006', 'DK Publishing Inc', 'Gallimard', '1909','2008', '1378', '1919', '1922', '1897', '2024', '1376', '2037'],dtype=object)
print(books.loc[books.yearOfPublication == 'DK Publishing Inc',:])
ISBN bookTitle \
209538 078946697X DK Readers: Creating the X-Men, How It All Beg...
221678 0789466953 DK Readers: Creating the X-Men, How Comic Book... bookAuthor yearOfPublication \
209538 2000 DK Publishing Inc
221678 2000 DK Publishing Inc publisher
209538 http://images.amazon.com/images/P/078946697X.0...
221678 http://images.amazon.com/images/P/0789466953.0...
books.loc[books.yearOfPublication == 'DK Publishing Inc',:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
209538 | 078946697X | DK Readers: Creating the X-Men, How It All Beg... | 2000 | DK Publishing Inc | http://images.amazon.com/images/P/078946697X.0... |
221678 | 0789466953 | DK Readers: Creating the X-Men, How Comic Book... | 2000 | DK Publishing Inc | http://images.amazon.com/images/P/0789466953.0... |
## 从上面可以看出,bookAuthor错误地装载了bookTitle,因此需要进行修正。
# ISBN '0789466953'
books.loc[books.ISBN == '0789466953','yearOfPublication'] = 2000
books.loc[books.ISBN == '0789466953','bookAuthor'] = "James Buckley"
books.loc[books.ISBN == '0789466953','publisher'] = "DK Publishing Inc"
books.loc[books.ISBN == '0789466953','bookTitle'] = "DK Readers: Creating the X-Men, How Comic Books Come to Life (Level 4: Proficient Readers)"#ISBN '078946697X'
books.loc[books.ISBN == '078946697X','yearOfPublication'] = 2000
books.loc[books.ISBN == '078946697X','bookAuthor'] = "Michael Teitelbaum"
books.loc[books.ISBN == '078946697X','publisher'] = "DK Publishing Inc"
books.loc[books.ISBN == '078946697X','bookTitle'] = "DK Readers: Creating the X-Men, How It All Began (Level 4: Proficient Readers)"
books.loc[(books.ISBN == '0789466953') | (books.ISBN == '078946697X'),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
209538 | 078946697X | DK Readers: Creating the X-Men, How It All Beg... | Michael Teitelbaum | 2000 | DK Publishing Inc |
221678 | 0789466953 | DK Readers: Creating the X-Men, How Comic Book... | James Buckley | 2000 | DK Publishing Inc |
## 继续纠正出版年鉴的类型
books.yearOfPublication=pd.to_numeric(books.yearOfPublication, errors='coerce')
sorted(books['yearOfPublication'].unique())
[0.0,1376.0,1378.0,1806.0,1897.0,1900.0,1901.0,1902.0,1904.0,1906.0,1908.0,1909.0,1910.0,1911.0,1914.0,1917.0,1919.0,1920.0,1921.0,1922.0,1923.0,1924.0,1925.0,1926.0,1927.0,1928.0,1929.0,1930.0,1931.0,1932.0,1933.0,1934.0,1935.0,1936.0,1937.0,1938.0,1939.0,1940.0,1941.0,1942.0,1943.0,1944.0,1945.0,1946.0,1947.0,1948.0,1949.0,1950.0,1951.0,1952.0,1953.0,1954.0,1955.0,1956.0,1957.0,1958.0,1959.0,1960.0,1961.0,1962.0,1963.0,1964.0,1965.0,1966.0,1967.0,1968.0,1969.0,1970.0,1971.0,1972.0,1973.0,1974.0,1975.0,1976.0,1977.0,1978.0,1979.0,1980.0,1981.0,1982.0,1983.0,1984.0,1985.0,1986.0,1987.0,1988.0,1989.0,1990.0,1991.0,1992.0,1993.0,1994.0,1995.0,1996.0,1997.0,1998.0,1999.0,2000.0,2001.0,2002.0,2003.0,2004.0,2005.0,2006.0,2008.0,2010.0,2011.0,2012.0,2020.0,2021.0,2024.0,2026.0,2030.0,2037.0,2038.0,2050.0,nan]
## 现在可以看出yearOfPublication的类型为int,其值范围为0-2050。## 由于该数据集建于2004年,我假设2006年之后的所有年份都无效,保留两年的保证金,以防数据集可能已更新。## 对于所有无效条目(包括0),我将这些条目转换为NaN,然后用剩余年份的平均值替换它们。
books.loc[(books.yearOfPublication > 2006) | (books.yearOfPublication == 0),'yearOfPublication'] = np.NAN
# 用年出版的平均价值代替NaNs在案例数据集被更新的情况下保留一定的空白
books.yearOfPublication.fillna(round(books.yearOfPublication.mean()), inplace=True)
books.yearOfPublication.isnull().sum()
0
books.yearOfPublication = books.yearOfPublication.astype(np.int32)
## publisher
books.loc[books.publisher.isnull(),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
128890 | 193169656X | Tyrant Moon | Elaine Corvidae | 2002 | NaN |
129037 | 1931696993 | Finders Keepers | Linnea Sinclair | 2001 | NaN |
## 检查行是否有书签作为查找器,看看我们是否能得到任何线索## 与不同的出版商和图书作者的所有行
books.loc[(books.bookTitle == 'Tyrant Moon'),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
128890 | 193169656X | Tyrant Moon | Elaine Corvidae | 2002 | NaN |
books.loc[(books.bookTitle == 'Finders Keepers'),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
10799 | 082177364X | Finders Keepers | Fern Michaels | 2002 | Zebra Books |
42019 | 0070465037 | Finders Keepers | Barbara Nickolae | 1989 | McGraw-Hill Companies |
58264 | 0688118461 | Finders Keepers | Emily Rodda | 1993 | Harpercollins Juvenile Books |
66678 | 1575663236 | Finders Keepers | Fern Michaels | 1998 | Kensington Publishing Corporation |
129037 | 1931696993 | Finders Keepers | Linnea Sinclair | 2001 | NaN |
134309 | 0156309505 | Finders Keepers | Will | 1989 | Voyager Books |
173473 | 0973146907 | Finders Keepers | Sean M. Costello | 2002 | Red Tower Publications |
195885 | 0061083909 | Finders Keepers | Sharon Sala | 2003 | HarperTorch |
211874 | 0373261160 | Finders Keepers | Elizabeth Travis | 1993 | Worldwide Library |
## 由图书作者检查以找到模式## 都有不同的出版商。这里没有线索
books.loc[(books.bookAuthor == 'Elaine Corvidae'),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
126762 | 1931696934 | Winter's Orphans | Elaine Corvidae | 2001 | Novelbooks |
128890 | 193169656X | Tyrant Moon | Elaine Corvidae | 2002 | NaN |
129001 | 0759901880 | Wolfkin | Elaine Corvidae | 2001 | Hard Shell Word Factory |
## 由图书作者检查以找到模式
books.loc[(books.bookAuthor == 'Linnea Sinclair'),:]
ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|
129037 | 1931696993 | Finders Keepers | Linnea Sinclair | 2001 | NaN |
## 因为没有什么共同的东西可以推断出NaNs的发布者,将它们替换为“other”
books.loc[(books.ISBN == '193169656X'),'publisher'] = 'other'
books.loc[(books.ISBN == '1931696993'),'publisher'] = 'other'
## 二、用户数据集
print (users.shape)
users.head()
(278858, 3)
userID | Location | Age | |
---|---|---|---|
0 | 1 | nyc, new york, usa | NaN |
1 | 2 | stockton, california, usa | 18.0 |
2 | 3 | moscow, yukon territory, russia | NaN |
3 | 4 | porto, v.n.gaia, portugal | 17.0 |
4 | 5 | farnborough, hants, united kingdom | NaN |
users.dtypes
userID int64
Location object
Age float64
dtype: object
users.userID.values
array([ 1, 2, 3, ..., 278856, 278857, 278858], dtype=int64)
## Age
sorted(users.Age.unique())
[nan,0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,110.0,111.0,113.0,114.0,115.0,116.0,118.0,119.0,123.0,124.0,127.0,128.0,132.0,133.0,136.0,137.0,138.0,140.0,141.0,143.0,146.0,147.0,148.0,151.0,152.0,156.0,157.0,159.0,162.0,168.0,172.0,175.0,183.0,186.0,189.0,199.0,200.0,201.0,204.0,207.0,208.0,209.0,210.0,212.0,219.0,220.0,223.0,226.0,228.0,229.0,230.0,231.0,237.0,239.0,244.0]
## 年龄栏有一些无效的条目,比如nan,0和非常高的值,比如100和以上
users.loc[(users.Age > 90) | (users.Age < 5), 'Age'] = np.nan
## 用平均值代替NaN
## 将数据类型设置为int
users.Age = users.Age.fillna(users.Age.mean())
users.Age = users.Age.astype(np.int32)
sorted(users.Age.unique())
[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90]
## 三、评级数据集
ratings.shape
(1149780, 3)
## 如果每个用户对每个条目进行评级,那么评级数据集将有nusers * nbooks条目,这表明数据集非常稀疏。
n_users = users.shape[0]
n_books = books.shape[0]
print (n_users * n_books)
75670906880
ratings.head(5)
userID | ISBN | bookRating | |
---|---|---|---|
0 | 276725 | 034545104X | 0 |
1 | 276726 | 0155061224 | 5 |
2 | 276727 | 0446520802 | 0 |
3 | 276729 | 052165615X | 3 |
4 | 276729 | 0521795028 | 6 |
ratings.bookRating.unique()
array([ 0, 5, 3, 6, 8, 7, 10, 9, 4, 1, 2], dtype=int64)
ratings_new = ratings[ratings.ISBN.isin(books.ISBN)]
print (ratings.shape)
print (ratings_new.shape)
(1149780, 3)
(1031136, 3)
## 没有新用户添加,因此我们将使用高于数据集的新用户(1031136,3)
print ("number of users: " + str(n_users))
print ("number of books: " + str(n_books))
number of users: 278858
number of books: 271360
sparsity=1.0-len(ratings_new)/float(n_users*n_books)
print ('图书交叉数据集的稀疏级别是 ' + str(sparsity*100) + ' %')
图书交叉数据集的稀疏级别是 99.99863734155898 %
ratings.bookRating.unique()
array([ 0, 5, 3, 6, 8, 7, 10, 9, 4, 1, 2], dtype=int64)
ratings_explicit = ratings_new[ratings_new.bookRating != 0]
ratings_implicit = ratings_new[ratings_new.bookRating == 0]
print (ratings_new.shape)
print( ratings_explicit.shape)
print (ratings_implicit.shape)
(1031136, 3)
(383842, 3)
(647294, 3)
## 统计
sns.countplot(data=ratings_explicit , x='bookRating')
plt.show()
## 基于简单流行度的推荐系统
ratings_count = pd.DataFrame(ratings_explicit.groupby(['ISBN'])['bookRating'].sum())
top10 = ratings_count.sort_values('bookRating', ascending = False).head(10)
print ("推荐下列书籍")
top10.merge(books, left_index = True, right_on = 'ISBN')
推荐下列书籍
bookRating | ISBN | bookTitle | bookAuthor | yearOfPublication | publisher | |
---|---|---|---|---|---|---|
408 | 5787 | 0316666343 | The Lovely Bones: A Novel | Alice Sebold | 2002 | Little, Brown |
748 | 4108 | 0385504209 | The Da Vinci Code | Dan Brown | 2003 | Doubleday |
522 | 3134 | 0312195516 | The Red Tent (Bestselling Backlist) | Anita Diamant | 1998 | Picador USA |
2143 | 2798 | 059035342X | Harry Potter and the Sorcerer's Stone (Harry P... | J. K. Rowling | 1999 | Arthur A. Levine Books |
356 | 2595 | 0142001740 | The Secret Life of Bees | Sue Monk Kidd | 2003 | Penguin Books |
26 | 2551 | 0971880107 | Wild Animus | Rich Shapero | 2004 | Too Far |
1105 | 2524 | 0060928336 | Divine Secrets of the Ya-Ya Sisterhood: A Novel | Rebecca Wells | 1997 | Perennial |
706 | 2402 | 0446672211 | Where the Heart Is (Oprah's Book Club (Paperba... | Billie Letts | 1998 | Warner Books |
231 | 2219 | 0452282152 | Girl with a Pearl Earring | Tracy Chevalier | 2001 | Plume Books |
118 | 2179 | 0671027360 | Angels & Demons | Dan Brown | 2001 | Pocket Star |
users_exp_ratings = users[users.userID.isin(ratings_explicit.userID)]
users_imp_ratings = users[users.userID.isin(ratings_implicit.userID)]
print (users.shape)
print (users_exp_ratings.shape)
print (users_imp_ratings.shape)
(278858, 3)
(68091, 3)
(52451, 3)
## 基于协同过滤的推荐系统
counts1 = ratings_explicit['userID'].value_counts()
ratings_explicit = ratings_explicit[ratings_explicit['userID'].isin(counts1[counts1 >= 100].index)]
counts = ratings_explicit['bookRating'].value_counts()
ratings_explicit = ratings_explicit[ratings_explicit['bookRating'].isin(counts[counts >= 100].index)]
ratings_matrix = ratings_explicit.pivot(index='userID', columns='ISBN', values='bookRating')
userID = ratings_matrix.index
ISBN = ratings_matrix.columns
print(ratings_matrix.shape)
ratings_matrix.head()
(449, 66574)
ISBN | 0000913154 | 0001046438 | 000104687X | 0001047213 | 0001047973 | 000104799X | 0001048082 | 0001053736 | 0001053744 | 0001055607 | ... | B000092Q0A | B00009EF82 | B00009NDAN | B0000DYXID | B0000T6KHI | B0000VZEJQ | B0000X8HIE | B00013AX9E | B0001I1KOG | B000234N3A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
userID | |||||||||||||||||||||
2033 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2110 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2276 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4017 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4385 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
5 rows × 66574 columns
n_users = ratings_matrix.shape[0] #只考虑那些给出明确评级的用户
n_books = ratings_matrix.shape[1]
print (n_users, n_books)
449 66574
ratings_matrix.fillna(0, inplace = True)
ratings_matrix = ratings_matrix.astype(np.int32)
ratings_matrix.head(5)
ISBN | 0000913154 | 0001046438 | 000104687X | 0001047213 | 0001047973 | 000104799X | 0001048082 | 0001053736 | 0001053744 | 0001055607 | ... | B000092Q0A | B00009EF82 | B00009NDAN | B0000DYXID | B0000T6KHI | B0000VZEJQ | B0000X8HIE | B00013AX9E | B0001I1KOG | B000234N3A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
userID | |||||||||||||||||||||
2033 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2276 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4017 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4385 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 rows × 66574 columns
sparsity=1.0-len(ratings_explicit)/float(users_exp_ratings.shape[0]*n_books)
print ('图书交叉数据集的稀疏级别是 ' + str(sparsity*100) + ' %')
图书交叉数据集的稀疏级别是 99.99772184106935 %
## 基于用户的协同过滤
global metric,k
k=10
metric='cosine'
def findksimilarusers(user_id, ratings, metric = metric, k=k):similarities=[]indices=[]model_knn = NearestNeighbors(metric = metric, algorithm = 'brute') model_knn.fit(ratings)loc = ratings.index.get_loc(user_id)distances, indices = model_knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1), n_neighbors = k+1)similarities = 1-distances.flatten()return similarities,indices
def predict_userbased(user_id, item_id, ratings, metric = metric, k=k):prediction=0user_loc = ratings.index.get_loc(user_id)item_loc = ratings.columns.get_loc(item_id)similarities, indices=findksimilarusers(user_id, ratings,metric, k) #similar users based on cosine similaritymean_rating = ratings.iloc[user_loc,:].mean() #to adjust for zero based indexingsum_wt = np.sum(similarities)-1product=1wtd_sum = 0 for i in range(0, len(indices.flatten())):if indices.flatten()[i] == user_loc:continue;else: ratings_diff = ratings.iloc[indices.flatten()[i],item_loc]-np.mean(ratings.iloc[indices.flatten()[i],:])product = ratings_diff * (similarities[i])wtd_sum = wtd_sum + product#在非常稀疏的数据集的情况下,使用基于协作的方法的相关度量可能会给出负面的评价#在这里的处理如下if prediction <= 0:prediction = 1 elif prediction >10:prediction = 10prediction = int(round(mean_rating + (wtd_sum/sum_wt)))print ('用户预测等级 {0} -> item {1}: {2}'.format(user_id,item_id,prediction))return prediction
## 测试
predict_userbased(11676,'0001056107',ratings_matrix)
用户预测等级 11676 -> item 0001056107: 22
## 基于项目的协同过滤
def findksimilaritems(item_id, ratings, metric=metric, k=k):similarities=[]indices=[]ratings=ratings.Tloc = ratings.index.get_loc(item_id)model_knn = NearestNeighbors(metric = metric, algorithm = 'brute')model_knn.fit(ratings)distances, indices = model_knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1), n_neighbors = k+1)similarities = 1-distances.flatten()return similarities,indices
def predict_itembased(user_id, item_id, ratings, metric = metric, k=k):prediction= wtd_sum =0user_loc = ratings.index.get_loc(user_id)item_loc = ratings.columns.get_loc(item_id)similarities, indices=findksimilaritems(item_id, ratings) #similar users based on correlation coefficientssum_wt = np.sum(similarities)-1product=1for i in range(0, len(indices.flatten())):if indices.flatten()[i] == item_loc:continue;else:product = ratings.iloc[user_loc,indices.flatten()[i]] * (similarities[i])wtd_sum = wtd_sum + product prediction = int(round(wtd_sum/sum_wt))#在非常稀疏的数据集的情况下,使用基于协作的方法的相关度量可能会给出负面的评价#在这里处理的是下面的//代码,没有下面的代码片段,下面的代码片段是为了避免负面影响#在使用相关度规时,可能会出现非常稀疏的数据集的预测if prediction <= 0:prediction = 1 elif prediction >10:prediction = 10print ('用户预测等级 {0} -> item {1}: {2}'.format(user_id,item_id,prediction) ) return prediction
## 测试
prediction = predict_itembased(11676,'0001056107',ratings_matrix)
用户预测等级 11676 -> item 0001056107: 1
相关文章:

数据分析作业四-基于用户及物品数据进行内容推荐
## 导入支持库 import pandas as pd import matplotlib.pyplot as plt import sklearn.metrics as metrics import numpy as np from sklearn.neighbors import NearestNeighbors from scipy.spatial.distance import correlation from sklearn.metrics.pairwise import pairwi…...

在腾讯云服务器OpenCLoudOS系统中安装svn(有图详解)
1. 安装svn yum -y install subversion 安装成功: 2. 创建数据根目录及仓库 mkdir -p /usr/local/svn/svnrepository 创建test仓库: svnadmin create /usr/local/svn/test test仓库创建成功: 3. 修改配置test仓库 cd /usr/local/svn/te…...
C语言日常刷题5
文章目录 题目答案与解析1234567、 题目 1、以下叙述中正确的是( ) A: 只能在循环体内和switch语句体内使用break语句 B: 当break出现在循环体中的switch语句体内时,其作用是跳出该switch语句体,并中止循环体的执行 C: continue语…...

【LeetCode-中等题】73. 矩阵置零
题目 题解一:使用标记数组 public void setZeroes(int[][] matrix) {int m matrix.length;int n matrix[0].length;boolean[] row new boolean[m];boolean[] col new boolean[n];for(int i0; i< m;i){for(int j 0;j<n;j){if (matrix[i][j] 0) row[i]col…...
本地部署 FastGPT
本地部署 FastGPT 1. FastGPT 是什么2. 部署 FastGPT 1. FastGPT 是什么 FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景! …...

软件工程(十八) 行为型设计模式(四)
1、状态模式 简要说明 允许一个对象在其内部改变时改变它的行为 速记关键字 状态变成类 类图如下 状态模式主要用来解决对象在多种状态转换时,需要对外输出不同的行为的问题。比如订单从待付款到待收货的咋黄台发生变化,执行的逻辑是不一样的。 所以我们将状态抽象为一…...

Socket通信与WebSocket协议
文章目录 目录 文章目录 前言 一、Socket通信 1.1 BIO 1.2 NIO 1.3 AIO 二、WebSocket协议 总结 前言 一、Socket通信 Socket是一种用于网络通信的编程接口(API),它提供了一种机制,使不同主机之间可以通过网络进行数据传输和通信…...

新KG视点 | Jeff Pan、陈矫彦等——大语言模型与知识图谱的机遇与挑战
OpenKG 大模型专辑 导读 知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。在这一背景下,OpenKG组织…...

详解过滤器Filter和拦截器Interceptor的区别和联系
目录 前言 区别 联系 前言 过滤器(Filter)和拦截器(Interceptor)都是用于在Web应用程序中处理请求和响应的组件,但它们在实现方式和功能上有一些区别。 区别 1. 实现方式: - 过滤器是基于Servlet规范的组件,通过实现javax.servlet.Filt…...
List常用的操作
1、看List里是否存在某个元素 contains //省略建立listboolean contains stringList.contains("上海");System.out.println(contains); 如果存在是true,不存在是false 2、看某个元素在List中的索引号 .indexOf List<String>stringList new Ar…...

Android studio APK切换多个摄像头(Camera2)
1.先设置camera的权限 <uses-permission android:name"android.permission.CAMERA" /> 2.布局 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"and…...
ChatGPT 对教育的影响,AI 如何颠覆传统教育
胜量老师 来源:BV1Nv4y1H7kC 由Chat GPT引发的对教育的思考,人类文明发展至今一直靠教育完成文明的传承,一个年轻人要经历若干年的学习,才能进入社会投入对文明的建设,而学习中有大量内容是需要记忆和反复训练的。 无…...

Spring(九)声明式事务
Spring整合Junit4和JdbcTemplater如下所示: 我们所使用的junit的jar包不同,可以整合不同版本的junit。 我们导入的依赖如下所示: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.a…...
java中用HSSFWorkbook生成xls格式的excel(亲测)
SXSSFWorkbook类是用于生成XLSX格式的Excel文件(基于XML格式),而不是XLS格式的Excel文件(基于二进制格式)。 如果你需要生成XLS格式的Excel文件,可以使用HSSFWorkbook类。以下是一个简单的示例:…...
做平面设计一般电脑可以吗 优漫动游
平面设计常用的软件如下:Photoshop、AutoCAD、AI等。其中对电脑配置要求高的是AutoCAD,可运行AutoCAD的软件均可运行如上软件。 做平面设计一般电脑可以吗 AutoCAD64位版配置要求:AMDAthlon64位处理器、支持SSE2技术的AMDOpteron处理器、…...

设计模式备忘录+命令模式实现Word撤销恢复操作
文章目录 前言思路代码实现uml类图总结 前言 最近学习设计模式行为型的模式,学到了备忘录模式提到这个模式可以记录一个对象的状态属性值,用于下次复用,于是便想到了我们在Windows系统上使用的撤销操作,于是便想着使用这个模式进…...

Linux centos7 bash编程小训练
训练要求: 求比一个数小的最大回文数 知识点: 一个数字正读反读都一样,我们称为回文数,如5、11、55、121、222等。 我们训练用bash编写一个小程序,由我们标准输入一个整数,计算机将显示出一个比这个数小…...

创作2周年纪念日-特别篇
创作2周年纪念日-特别篇 1. 与CSDN的机缘2. 收获3. 憧憬 1. 与CSDN的机缘 很荣幸,在大学时候,能够接触到CSDN这样一个平台,当时对嵌入式开发、编程、计算机视觉等内容比较感兴趣。后面一个很偶然的联培实习机会,让我接触到了Pych…...

【UE5】用法简介-使用MAWI高精度树林资产的地形材质与添加风雪效果
首先我们新建一个basic工程 然后点击floor按del键,把floor给删除。 只留下空白场景 点击“地形” 在这个范例里,我只创建一个500X500大小的地形,只为了告诉大家用法,点击创建 创建好之后有一大片空白的地形出现 让我们点左上角…...

兼容AD210 车规级高精度隔离放大器:ISO EM210
车规级高精度隔离放大器:ISO EM210 Pin-Pin兼容AD210的低成本,小体积DIP标准38Pin金属外壳封装模块,能有效屏蔽现场EMC空间干扰。功能设计全面,采用非固定增益方式,输入信号经过输入端的前置放大器(增益为1-100&#x…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...