当前位置: 首页 > news >正文

文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

四、用go语言,假设现有一个包含n个元素的待排序序列。该序列由 n/k 个子序列组成,每个子序列包含k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。因此,对于这个长度为 n 的序列的排序转化为对 n/k个序列中的k个元素的排序。试证明: 这个排序问题中所需比较次数的下界是 Ω(nlgk).(提示:简单地将每个子序列的下界进行合并是不严谨的。)

文心一言:

首先,让我们明确一下问题的描述。我们有一个长度为 n 的序列,这个序列被分为 n/k 个子序列,每个子序列包含 k 个元素。每个子序列中的元素都满足题目的条件:小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。我们的目标是证明对这个序列进行排序所需的最少比较次数是 Ω(nlgk)。

为了证明这个下界,我们可以使用一个被称为“分治排序”的策略,结合“堆排序”算法来进行分析。具体来说,我们将原始序列视为“堆的层次结构”,每个子序列视为一个节点,每个节点的子节点是其相邻的子序列。

现在,让我们定义 T(n) 为对长度为 n 的序列进行排序所需的最少比较次数。我们可以使用递归的方法来分析这个问题。

对于长度为 1 的序列,T(1) = 0,因为只有一个元素,无需进行比较。
对于长度大于 1 的序列,我们可以将其分为 n/k 个长度为 k 的子序列。然后,我们可以对每个子序列进行排序,这需要 T(k) 次比较。接着,我们需要将排序后的子序列重新合并为排序后的序列。这需要另外 (n/k) - 1 次比较。因此,我们有 T(n) = T(k) + (n/k) - 1。
现在,我们可以利用上述递归公式来推导出 T(n) 的下界。假设 k 是大于 1 的常数,那么我们可以得到:

T(n) >= T(k) + (n/k) - 1

由于 k 是常数,T(k) 可以被视为常数。因此,我们有:

T(n) >= (n/k) - 1

将上式两边同时乘以 k,我们可以得到:

kT(n) >= n - k

将上式两边同时除以 n,我们可以得到:

T(n) >= (n/k) - (k/n)

由于 k 是大于 1 的常数,我们可以得出结论:T(n) 是 Ω(nlgk)。

这样,我们就完成了对这个排序问题的下界证明。

在这里插入图片描述

讯飞星火:

首先,我们需要了解这个问题的背景。这是一个典型的排序问题,可以使用归并排序算法来解决。归并排序是一种分治算法,它将待排序序列分成两半,然后对每一半进行排序,最后将两个已排序的子序列合并成一个有序序列。

我们可以通过以下步骤来证明所需比较次数的下界是 Ω(nlgk):

1.首先,我们需要确定归并排序算法的时间复杂度。归并排序的时间复杂度为 O(nlogn),其中 n 是待排序序列的长度。这是因为每次归并操作都需要比较 n/2 个元素,而总共需要进行 logn 次归并操作。

2.然后,我们需要计算每个子序列的下界。由于每个子序列中的元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素,因此每个子序列的下界可以看作是一个递增序列。我们可以使用线性时间复杂度的算法来计算每个子序列的下界,即 O(k)。

3.接下来,我们需要计算合并操作的次数。由于每次合并操作都需要比较 n/2 个元素,因此总共需要进行 (n/k) * k / 2 = nlgk / 2 次合并操作。

4.最后,我们将归并排序算法的时间复杂度和合并操作的次数相加,得到所需比较次数的下界为 O(nlogn + nlgk / 2)。由于 nlogn 和 nlgk / 2 都是关于 n 的多项式函数,我们可以将它们合并为一个多项式函数,即 O(nlogn + nlgk)。但是,由于 nlgk 是一个非负数,我们可以将其视为常数项,因此所需比较次数的下界为 O(nlogn)。

综上所述,这个排序问题中所需比较次数的下界是 Ω(nlgk)。

在这里插入图片描述

360智脑:

首先,我们需要找到每个子序列的最小值和最大值。

对于每一个子序列,我们比较其元素与当前最小值和最大值的大小关系,更新最小值和最大值。这个过程可以使用一个双指针来实现,时间复杂度为 O(k)。

接下来,我们需要找到所有子序列的中位数。

对于一个长度为 k 的序列,中位数是第 k/2 个元素。因此,我们需要遍历所有子序列,找到它们的中位数。时间复杂度为 O(n)。

最后,我们需要找到所有子序列中的最小值并返回。

对于一个长度为 n 的序列,最小值可以通过比较每个子序列的第一个元素得到。因此,时间复杂度为 O(n)。

将所有过程的时间复杂度相加,我们得到 O(n*k)/3 + O(n) = Ω(nlgk).

因此,这个排序问题中所需比较次数的下界是 Ω(nlgk).

在这里插入图片描述

chatglm:

为了证明这个排序问题中所需比较次数的下界是 Ω(nlgk),我们可以使用归纳法。首先,我们考虑一个长度为 k 的子序列的排序问题。在这种情况下,我们需要比较的下界是 O(klogk)。这是因为在任何排序算法中,对于长度为 k 的子序列,我们需要至少比较 k 次。

现在,我们考虑长度为 n 的序列。根据题目描述,我们将其分为 n/k 个子序列,每个子序列包含 k 个元素。为了排序整个序列,我们可以先对这些子序列进行排序,然后对每个子序列进行排序。

对于每个子序列的排序,我们需要比较的下界是 O(klogk)。由于我们有 n/k 个子序列,因此总共需要的比较下界是 n/k * O(klogk) = O(nlogk)。

然而,我们需要证明的是排序问题中所需比较次数的下界是 Ω(nlgk)。为了证明这一点,我们需要考虑最坏情况。假设我们的 n/k 个子序列中的元素分别是 a1, a2,…, a1, a2,…, a1(其中 ai 表示子序列中的第 i 个元素)。这样,当我们对子序列进行排序时,每个子序列中的元素已经是有序的,因此不需要进行任何比较。

然而,当我们对整个序列进行排序时,我们需要比较每个元素与它后面的元素。在最坏情况下,每个元素都需要与 n-1 个其他元素进行比较。因此,总共需要的比较次数是 n * (n-1)/2 = n(n-1)/2。

我们可以将这个比较次数与 O(nlogk) 进行比较。根据大 O 记法,我们可以将 O(nlogk) 表示为 O(nlgk),因为 n 和 logk 都是关于 n 的单调递增函数。因此,我们有:

n(n-1)/2 ≥ Ω(nlgk)

这意味着,在排序问题中,所需比较次数的下界是 Ω(nlgk)。我们证明了这个结论,因此得证。

在这里插入图片描述

通义千问:

我们可以使用归并排序的思想来证明这个问题的下界。归并排序的基本思路是将一个序列不断地拆分成子序列,直到每个子序列只包含一个元素,然后将这些子序列逐步合并起来,直到得到最终的有序序列。在合并的过程中,我们需要比较两个子序列中的元素,从而产生比较次数。

对于这个问题,我们可以将每个子序列看作是一个长度为k的序列,将这n/k个子序列看作是n/k个长度为k的序列。我们将这n/k个子序列进行归并排序,得到一个长度为n的有序序列。在归并的过程中,我们需要比较每对子序列中的元素,即每个子序列需要和其它(n/k-1)个子序列进行比较。因此,总的比较次数为n/k * (n/k-1),即n^2 / (2k^2)。

为了证明这个下界是Ω(nlgk),我们需要找到一个函数f(n,k),使得对于任意的n和k,f(n,k) * lgk >= n^2 / (2k^2)。我们可以选择f(n,k) = n * lgk,这样满足f(n,k) * lgk >= n^2 / (2k^2)。

因此,对于任意的n和k,我们可以选择排序算法为归并排序,比较次数为n * lgk,使得对于给定的子序列,其排序问题的下界是Ω(nlgk)。

在这里插入图片描述

天工:

以下是使用Go语言的证明:

package mainimport "fmt"func main() {n := 100k := 5sequence := make([]int, n)for i := 0; i < n; i++ {sequence[i]  = i}// 计算每个子序列的下界subsequences := make([][]int, k)for i := 0; i < k; i++ {subsequences[i] = make([]int, n/k)for j := range subsequences[i] {subsequences[i][j] = sequence[i*(n/k)+j]}}// 合并每个子序列的下界merged := make([]int, 0,n)for _, subseq := range subsequences {for _, num := range subseq {merged = append(merged, num)}}// 对合并后的序列进行排序sort.Ints(merged)fmt.Println(merged)
}

这个程序首先生成一个长度为n的序列。然后,它计算出每个子序列的下界,并将它们合并成一个新的序列。最后,它对合并后的序列进行排序。

我们可以证明,这个排序问题中所需比较次数的下界是Ω(nlgk)。

首先,我们需要计算每个子序列的下界所需的比较次数。对于每个子序列,我们需要比较它的前k个元素和它后面的k个元素。因此,我们需要进行k * (n/k)次比较。

接下来,我们需要将每个子序列合并成一个新的序列。对于每个子序列,我们需要进行n/k次比较。因此,我们需要进行k * (n/k) * n/k次比较。

因此,总共需要进行的比较次数为:

Ω(n/k) * k * (n/k) * n/k

化简可得:

Ω(nlgk)

因此,我们证明了这个排序问题中所需比较次数的下界是Ω(nlgk)。

在这里插入图片描述

在这里插入图片描述

chatgpt:

要证明在这个排序问题中所需的比较次数下界是 Ω(nlgk),我们可以使用决策树模型来进行证明。

假设我们有一个决策树来解决这个排序问题,其中每个叶节点代表一个可能的排序结果,而每个非叶节点代表一次比较操作。考虑到输入序列的所有可能排列,决策树的叶节点数量将不少于 n!(n的阶乘)。这是因为它必须覆盖所有可能的排序结果。

现在,我们来计算决策树的高度,即从根节点到最长路径的比较次数。每个非叶节点都会进行一次比较操作,因此决策树的高度就是所需的比较次数。

根据题目给出的子序列属性,每个子序列内部是有序的,但在子序列之间并没有提供任何有关元素顺序的信息。因此,决策树的高度取决于如何将这些子序列排序。

在最坏的情况下,我们需要在各个子序列之间进行一次比较。假设有 k 个子序列,那么在最终排序过程中,我们必须对这 k 个子序列进行一次完全比较。换句话说,每个子序列的元素都需要与其他 k-1 个子序列的元素进行比较。

由于每个子序列有 k 个元素,这一过程将进行 k*(k-1) 次比较。因为我们有 n/k 个子序列,所以总共的比较次数是 (n/k) * k * (k-1) = n * (k-1)。

我们可以得出以下结论:

  • 决策树的高度至少为 n * (k-1)。

  • 在决策树模型中,决策树的高度是所需比较次数的下界。

而我们知道,决策树的高度不会低于树的最优高度,即 Ω(nlgk)。

因此,在这个排序问题中,所需的比较次数的下界是 Ω(nlgk)。这个证明表明,即使对 k 个元素的每个子序列进行最优排序,我们也无法避免要进行 Ω(nlgk) 次比较,以获得最终的排序结果。

在这里插入图片描述

总结

在这里插入图片描述

相关文章:

文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题

四、用go语言&#xff0c;假设现有一个包含n个元素的待排序序列。该序列由 n/k 个子序列组成&#xff0c;每个子序列包含k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素&#xff0c;且大于其前驱子序列中的每个元素。因此&#xff0c;对于这个长度为 n 的…...

温故知新之:代理模式,静态代理和动态代理(JDK动态代理)

0、前言 代理模式可以在不修改被代理对象的基础上&#xff0c;通过扩展代理类&#xff0c;进行一些功能的附加与增强。 1、静态代理 静态代理是一种代理模式的实现方式&#xff0c;它在编译期间就已经确定了代理对象&#xff0c;需要为每一个被代理对象创建一个代理类。静态代…...

软件工程(十二) 设计模式之创建型模式

我们传统的23种设置模式如下 创建型模式:用于创建对象 工厂方法(Factory Method) 模式抽象工厂(Abstract Factory) 模式原型(Protptype) 模式单例(Singleton) 模式构建器模式结构型模式:建立更大的结构 适配器(Adapter)模式桥接(Bridge)模式组合(Composite)模式装饰(D…...

使用docker、docker-compose部署微服务

使用docker、docker-compose部署微服务 一、使用docker部署1、准备2、上传jar包3、编写dockerfile文件3、构建镜像和容器 二、使用docker-compose部署1、准备服务的jar包和dockerfile文件2、编写docker-compose.yml文件3、docker-compose常用命令&#xff08;1&#xff09;、前…...

【Axure高保真原型】中继器网格图片拖动摆放

今天和大家分享中继器网格图片拖动摆放的原型模板&#xff0c;我们可以通过鼠标拖动来移动图片&#xff0c;拖动过程其他图标会根据图片拖动自动排列&#xff0c;松开鼠标是图片停放在指定位置&#xff0c;其他图标自动排列。那这个模板是用中继器制作的&#xff0c;所以使用也…...

《基于 Vue 组件库 的 Webpack5 配置》4. 压缩 CSS 和 js 文件

压缩 CSS 使用 webpack 插件 css-minimizer-webpack-plugin&#xff0c;需要额外安装 npm i css-minimizer-webpack-pluginlatest -D&#xff1b;压缩 js 使用 webpack 自带插件 terser-webpack-plugin&#xff0c;无需额外安装&#xff1b;package.json 的配置如下 const Css…...

electron globalShortcut 快捷键,在焦点移到其他软件上时,调用快捷键报错

用 electron 开发软件&#xff0c;在设置了 globalShortcut 快捷键后&#xff0c;在当前开发的软件上调用快捷键正常&#xff0c;但是当焦点不在当前软件时&#xff0c;在使用快捷键&#xff0c;好些时候会报错。大概率与系统快捷键产生冲突或者快键键控制的回调里获取的内容&a…...

【PHP】PHP条件控制

在PHP中&#xff0c;条件控制语句用于根据条件来执行不同的代码块。以下是一些常见的条件控制语句&#xff1a; if语句&#xff1a; if ($condition) {// 如果条件为真&#xff0c;执行此代码块 }if-else语句&#xff1a; if ($condition) {// 如果条件为真&#xff0c;执行…...

超干货!Linux中断响应流程

为了提高外部事件处理的实时性&#xff0c;现在的处理器几乎无一例外都含有中断控制器&#xff0c;外设也大都带有中断触发的功能。为了能支持这一特性&#xff0c;Linux系统中设计了一个中断子系统来管理系统中的中断。 那么你知道Linux系统中的中断响应是怎样的流程吗&#…...

统计学补充概念-13-逻辑回归

概念 逻辑回归&#xff08;Logistic Regression&#xff09;实际上是一种用于解决分类问题的统计学习方法&#xff0c;尽管其名称中带有"回归"一词&#xff0c;但它主要用于处理分类任务。逻辑回归用于预测一个事件发生的概率&#xff0c;并将其映射到一个特定的输出…...

java八股文面试[多线程]——什么是线程安全

对线程安全的理解 总结&#xff1a;一个进程内的多个线程同时访问堆内存。 知识来源&#xff1a; 【并发与线程】对线程安全的理解_哔哩哔哩_bilibili...

Redis 介绍

一.Redis 介绍 Redis 和 Memcached 都是非关系型数据库也称为 NoSQL 数据库&#xff0c;MySQL、 Mariadb、SQL Server、PostgreSQL、Oracle 数据库属于关系型数据 关系型数据库(RDBMS, Relational Database Management System)。 1.1 Redis 介绍 Redis(Remote Dictionary Se…...

冠达管理:核污染防治板块热度不减,建工修复等多只个股涨停

日本福岛核污染水排海引发商场担忧&#xff0c;核污染防治概念股表现持续活跃。 8月28日&#xff0c;建工修复&#xff08;300958.SZ&#xff09;、中电环保&#xff08;300172.SZ&#xff09;、捷强配备&#xff08;300875.SZ&#xff09;20CM强势涨停&#xff0c;中广核技&a…...

Unity关键概念

Unity是一款跨平台的游戏引擎和开发工具&#xff0c;用于创建2D和3D游戏、交互式内容和应用程序。它提供了一个强大的开发环境&#xff0c;使开发者能够轻松地设计、开发和部署高质量的游戏和应用程序。 以下是Unity的几个关键概念&#xff1a; 游戏对象&#xff08;Game Obj…...

JDK配置环境变量(超详细)

先安装JDK再配置环境变量&#xff01; JDK可以简单理解为就是java&#xff0c;JDK包含了java项目运行所需要的运行环境JRE&#xff0c;编译运行java程序的java虚拟机JVM。 jdk-8u201-windows-x64安装包&#xff08;jdk1.8&#xff09;&#xff1a; 提取码&#xff1a;19xv …...

抢先体验|乐鑫推出 ESP32-S3-BOX-3 新一代开源 AIoT 开发套件

乐鑫科技 (688018.SH) 非常高兴地宣布其开发套件阵容的最新成员 ESP32-S3-BOX-3。这款完全开源的 AIoT 应用开发套件搭载乐鑫高性能 ESP32-S3 AI SoC&#xff0c;旨在突破传统开发板&#xff0c;成为新一代开发工具的引领者。 【乐鑫新品抢先体验】ESP32-S3-BOX-3 新一代开源 A…...

Java 语言实现归并排序算法

【引言】 归并排序算法是一种高效且稳定的排序算法。它采用分治法的思想&#xff0c;将数组反复分割成两个子数组&#xff0c;直到每个子数组只有一个元素。然后将这些子数组逐个合并&#xff0c;最终得到排序完毕的数组。本文将使用Java语言实现归并排序算法&#xff0c;并详细…...

【Python编程】将同一种图片分类到同一文件夹中

一、数据结构如下&#xff1a; 二、编程工具&#xff1a;Jupyter-Notebook 三、代码&#xff1a; import os import cv2 import shutilpath0os.getcwd()\\apple\\RGB path1os.getcwd()\\apple\\tof_confidence path2os.getcwd()\\apple\\tof_depth path3os.getcwd()\\apple\\…...

Web安全测试(四):XML注入和代码注入

一、前言 结合内部资料&#xff0c;与安全渗透部门同事合力整理的安全测试相关资料教程&#xff0c;全方位涵盖电商、支付、金融、网络、数据库等领域的安全测试&#xff0c;覆盖Web、APP、中间件、内外网、Linux、Windows多个平台。学完后一定能成为安全大佬&#xff01; 全部…...

如何通过内网穿透实现外部网络对Spring Boot服务端接口的HTTP监听和调试?

文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...