文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题
四、用go语言,假设现有一个包含n个元素的待排序序列。该序列由 n/k 个子序列组成,每个子序列包含k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。因此,对于这个长度为 n 的序列的排序转化为对 n/k个序列中的k个元素的排序。试证明: 这个排序问题中所需比较次数的下界是 Ω(nlgk).(提示:简单地将每个子序列的下界进行合并是不严谨的。)
文心一言:
首先,让我们明确一下问题的描述。我们有一个长度为 n 的序列,这个序列被分为 n/k 个子序列,每个子序列包含 k 个元素。每个子序列中的元素都满足题目的条件:小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。我们的目标是证明对这个序列进行排序所需的最少比较次数是 Ω(nlgk)。
为了证明这个下界,我们可以使用一个被称为“分治排序”的策略,结合“堆排序”算法来进行分析。具体来说,我们将原始序列视为“堆的层次结构”,每个子序列视为一个节点,每个节点的子节点是其相邻的子序列。
现在,让我们定义 T(n) 为对长度为 n 的序列进行排序所需的最少比较次数。我们可以使用递归的方法来分析这个问题。
对于长度为 1 的序列,T(1) = 0,因为只有一个元素,无需进行比较。
对于长度大于 1 的序列,我们可以将其分为 n/k 个长度为 k 的子序列。然后,我们可以对每个子序列进行排序,这需要 T(k) 次比较。接着,我们需要将排序后的子序列重新合并为排序后的序列。这需要另外 (n/k) - 1 次比较。因此,我们有 T(n) = T(k) + (n/k) - 1。
现在,我们可以利用上述递归公式来推导出 T(n) 的下界。假设 k 是大于 1 的常数,那么我们可以得到:
T(n) >= T(k) + (n/k) - 1
由于 k 是常数,T(k) 可以被视为常数。因此,我们有:
T(n) >= (n/k) - 1
将上式两边同时乘以 k,我们可以得到:
kT(n) >= n - k
将上式两边同时除以 n,我们可以得到:
T(n) >= (n/k) - (k/n)
由于 k 是大于 1 的常数,我们可以得出结论:T(n) 是 Ω(nlgk)。
这样,我们就完成了对这个排序问题的下界证明。

讯飞星火:
首先,我们需要了解这个问题的背景。这是一个典型的排序问题,可以使用归并排序算法来解决。归并排序是一种分治算法,它将待排序序列分成两半,然后对每一半进行排序,最后将两个已排序的子序列合并成一个有序序列。
我们可以通过以下步骤来证明所需比较次数的下界是 Ω(nlgk):
1.首先,我们需要确定归并排序算法的时间复杂度。归并排序的时间复杂度为 O(nlogn),其中 n 是待排序序列的长度。这是因为每次归并操作都需要比较 n/2 个元素,而总共需要进行 logn 次归并操作。
2.然后,我们需要计算每个子序列的下界。由于每个子序列中的元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素,因此每个子序列的下界可以看作是一个递增序列。我们可以使用线性时间复杂度的算法来计算每个子序列的下界,即 O(k)。
3.接下来,我们需要计算合并操作的次数。由于每次合并操作都需要比较 n/2 个元素,因此总共需要进行 (n/k) * k / 2 = nlgk / 2 次合并操作。
4.最后,我们将归并排序算法的时间复杂度和合并操作的次数相加,得到所需比较次数的下界为 O(nlogn + nlgk / 2)。由于 nlogn 和 nlgk / 2 都是关于 n 的多项式函数,我们可以将它们合并为一个多项式函数,即 O(nlogn + nlgk)。但是,由于 nlgk 是一个非负数,我们可以将其视为常数项,因此所需比较次数的下界为 O(nlogn)。
综上所述,这个排序问题中所需比较次数的下界是 Ω(nlgk)。

360智脑:
首先,我们需要找到每个子序列的最小值和最大值。
对于每一个子序列,我们比较其元素与当前最小值和最大值的大小关系,更新最小值和最大值。这个过程可以使用一个双指针来实现,时间复杂度为 O(k)。
接下来,我们需要找到所有子序列的中位数。
对于一个长度为 k 的序列,中位数是第 k/2 个元素。因此,我们需要遍历所有子序列,找到它们的中位数。时间复杂度为 O(n)。
最后,我们需要找到所有子序列中的最小值并返回。
对于一个长度为 n 的序列,最小值可以通过比较每个子序列的第一个元素得到。因此,时间复杂度为 O(n)。
将所有过程的时间复杂度相加,我们得到 O(n*k)/3 + O(n) = Ω(nlgk).
因此,这个排序问题中所需比较次数的下界是 Ω(nlgk).

chatglm:
为了证明这个排序问题中所需比较次数的下界是 Ω(nlgk),我们可以使用归纳法。首先,我们考虑一个长度为 k 的子序列的排序问题。在这种情况下,我们需要比较的下界是 O(klogk)。这是因为在任何排序算法中,对于长度为 k 的子序列,我们需要至少比较 k 次。
现在,我们考虑长度为 n 的序列。根据题目描述,我们将其分为 n/k 个子序列,每个子序列包含 k 个元素。为了排序整个序列,我们可以先对这些子序列进行排序,然后对每个子序列进行排序。
对于每个子序列的排序,我们需要比较的下界是 O(klogk)。由于我们有 n/k 个子序列,因此总共需要的比较下界是 n/k * O(klogk) = O(nlogk)。
然而,我们需要证明的是排序问题中所需比较次数的下界是 Ω(nlgk)。为了证明这一点,我们需要考虑最坏情况。假设我们的 n/k 个子序列中的元素分别是 a1, a2,…, a1, a2,…, a1(其中 ai 表示子序列中的第 i 个元素)。这样,当我们对子序列进行排序时,每个子序列中的元素已经是有序的,因此不需要进行任何比较。
然而,当我们对整个序列进行排序时,我们需要比较每个元素与它后面的元素。在最坏情况下,每个元素都需要与 n-1 个其他元素进行比较。因此,总共需要的比较次数是 n * (n-1)/2 = n(n-1)/2。
我们可以将这个比较次数与 O(nlogk) 进行比较。根据大 O 记法,我们可以将 O(nlogk) 表示为 O(nlgk),因为 n 和 logk 都是关于 n 的单调递增函数。因此,我们有:
n(n-1)/2 ≥ Ω(nlgk)
这意味着,在排序问题中,所需比较次数的下界是 Ω(nlgk)。我们证明了这个结论,因此得证。

通义千问:
我们可以使用归并排序的思想来证明这个问题的下界。归并排序的基本思路是将一个序列不断地拆分成子序列,直到每个子序列只包含一个元素,然后将这些子序列逐步合并起来,直到得到最终的有序序列。在合并的过程中,我们需要比较两个子序列中的元素,从而产生比较次数。
对于这个问题,我们可以将每个子序列看作是一个长度为k的序列,将这n/k个子序列看作是n/k个长度为k的序列。我们将这n/k个子序列进行归并排序,得到一个长度为n的有序序列。在归并的过程中,我们需要比较每对子序列中的元素,即每个子序列需要和其它(n/k-1)个子序列进行比较。因此,总的比较次数为n/k * (n/k-1),即n^2 / (2k^2)。
为了证明这个下界是Ω(nlgk),我们需要找到一个函数f(n,k),使得对于任意的n和k,f(n,k) * lgk >= n^2 / (2k^2)。我们可以选择f(n,k) = n * lgk,这样满足f(n,k) * lgk >= n^2 / (2k^2)。
因此,对于任意的n和k,我们可以选择排序算法为归并排序,比较次数为n * lgk,使得对于给定的子序列,其排序问题的下界是Ω(nlgk)。

天工:
以下是使用Go语言的证明:
package mainimport "fmt"func main() {n := 100k := 5sequence := make([]int, n)for i := 0; i < n; i++ {sequence[i] = i}// 计算每个子序列的下界subsequences := make([][]int, k)for i := 0; i < k; i++ {subsequences[i] = make([]int, n/k)for j := range subsequences[i] {subsequences[i][j] = sequence[i*(n/k)+j]}}// 合并每个子序列的下界merged := make([]int, 0,n)for _, subseq := range subsequences {for _, num := range subseq {merged = append(merged, num)}}// 对合并后的序列进行排序sort.Ints(merged)fmt.Println(merged)
}
这个程序首先生成一个长度为n的序列。然后,它计算出每个子序列的下界,并将它们合并成一个新的序列。最后,它对合并后的序列进行排序。
我们可以证明,这个排序问题中所需比较次数的下界是Ω(nlgk)。
首先,我们需要计算每个子序列的下界所需的比较次数。对于每个子序列,我们需要比较它的前k个元素和它后面的k个元素。因此,我们需要进行k * (n/k)次比较。
接下来,我们需要将每个子序列合并成一个新的序列。对于每个子序列,我们需要进行n/k次比较。因此,我们需要进行k * (n/k) * n/k次比较。
因此,总共需要进行的比较次数为:
Ω(n/k) * k * (n/k) * n/k
化简可得:
Ω(nlgk)
因此,我们证明了这个排序问题中所需比较次数的下界是Ω(nlgk)。


chatgpt:
要证明在这个排序问题中所需的比较次数下界是 Ω(nlgk),我们可以使用决策树模型来进行证明。
假设我们有一个决策树来解决这个排序问题,其中每个叶节点代表一个可能的排序结果,而每个非叶节点代表一次比较操作。考虑到输入序列的所有可能排列,决策树的叶节点数量将不少于 n!(n的阶乘)。这是因为它必须覆盖所有可能的排序结果。
现在,我们来计算决策树的高度,即从根节点到最长路径的比较次数。每个非叶节点都会进行一次比较操作,因此决策树的高度就是所需的比较次数。
根据题目给出的子序列属性,每个子序列内部是有序的,但在子序列之间并没有提供任何有关元素顺序的信息。因此,决策树的高度取决于如何将这些子序列排序。
在最坏的情况下,我们需要在各个子序列之间进行一次比较。假设有 k 个子序列,那么在最终排序过程中,我们必须对这 k 个子序列进行一次完全比较。换句话说,每个子序列的元素都需要与其他 k-1 个子序列的元素进行比较。
由于每个子序列有 k 个元素,这一过程将进行 k*(k-1) 次比较。因为我们有 n/k 个子序列,所以总共的比较次数是 (n/k) * k * (k-1) = n * (k-1)。
我们可以得出以下结论:
-
决策树的高度至少为 n * (k-1)。
-
在决策树模型中,决策树的高度是所需比较次数的下界。
而我们知道,决策树的高度不会低于树的最优高度,即 Ω(nlgk)。
因此,在这个排序问题中,所需的比较次数的下界是 Ω(nlgk)。这个证明表明,即使对 k 个元素的每个子序列进行最优排序,我们也无法避免要进行 Ω(nlgk) 次比较,以获得最终的排序结果。

总结

相关文章:
文心一言 VS 讯飞星火 VS chatgpt (83)-- 算法导论8.1 4题
四、用go语言,假设现有一个包含n个元素的待排序序列。该序列由 n/k 个子序列组成,每个子序列包含k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。因此,对于这个长度为 n 的…...
温故知新之:代理模式,静态代理和动态代理(JDK动态代理)
0、前言 代理模式可以在不修改被代理对象的基础上,通过扩展代理类,进行一些功能的附加与增强。 1、静态代理 静态代理是一种代理模式的实现方式,它在编译期间就已经确定了代理对象,需要为每一个被代理对象创建一个代理类。静态代…...
软件工程(十二) 设计模式之创建型模式
我们传统的23种设置模式如下 创建型模式:用于创建对象 工厂方法(Factory Method) 模式抽象工厂(Abstract Factory) 模式原型(Protptype) 模式单例(Singleton) 模式构建器模式结构型模式:建立更大的结构 适配器(Adapter)模式桥接(Bridge)模式组合(Composite)模式装饰(D…...
使用docker、docker-compose部署微服务
使用docker、docker-compose部署微服务 一、使用docker部署1、准备2、上传jar包3、编写dockerfile文件3、构建镜像和容器 二、使用docker-compose部署1、准备服务的jar包和dockerfile文件2、编写docker-compose.yml文件3、docker-compose常用命令(1)、前…...
【Axure高保真原型】中继器网格图片拖动摆放
今天和大家分享中继器网格图片拖动摆放的原型模板,我们可以通过鼠标拖动来移动图片,拖动过程其他图标会根据图片拖动自动排列,松开鼠标是图片停放在指定位置,其他图标自动排列。那这个模板是用中继器制作的,所以使用也…...
《基于 Vue 组件库 的 Webpack5 配置》4. 压缩 CSS 和 js 文件
压缩 CSS 使用 webpack 插件 css-minimizer-webpack-plugin,需要额外安装 npm i css-minimizer-webpack-pluginlatest -D;压缩 js 使用 webpack 自带插件 terser-webpack-plugin,无需额外安装;package.json 的配置如下 const Css…...
electron globalShortcut 快捷键,在焦点移到其他软件上时,调用快捷键报错
用 electron 开发软件,在设置了 globalShortcut 快捷键后,在当前开发的软件上调用快捷键正常,但是当焦点不在当前软件时,在使用快捷键,好些时候会报错。大概率与系统快捷键产生冲突或者快键键控制的回调里获取的内容&a…...
【PHP】PHP条件控制
在PHP中,条件控制语句用于根据条件来执行不同的代码块。以下是一些常见的条件控制语句: if语句: if ($condition) {// 如果条件为真,执行此代码块 }if-else语句: if ($condition) {// 如果条件为真,执行…...
超干货!Linux中断响应流程
为了提高外部事件处理的实时性,现在的处理器几乎无一例外都含有中断控制器,外设也大都带有中断触发的功能。为了能支持这一特性,Linux系统中设计了一个中断子系统来管理系统中的中断。 那么你知道Linux系统中的中断响应是怎样的流程吗&#…...
统计学补充概念-13-逻辑回归
概念 逻辑回归(Logistic Regression)实际上是一种用于解决分类问题的统计学习方法,尽管其名称中带有"回归"一词,但它主要用于处理分类任务。逻辑回归用于预测一个事件发生的概率,并将其映射到一个特定的输出…...
java八股文面试[多线程]——什么是线程安全
对线程安全的理解 总结:一个进程内的多个线程同时访问堆内存。 知识来源: 【并发与线程】对线程安全的理解_哔哩哔哩_bilibili...
Redis 介绍
一.Redis 介绍 Redis 和 Memcached 都是非关系型数据库也称为 NoSQL 数据库,MySQL、 Mariadb、SQL Server、PostgreSQL、Oracle 数据库属于关系型数据 关系型数据库(RDBMS, Relational Database Management System)。 1.1 Redis 介绍 Redis(Remote Dictionary Se…...
冠达管理:核污染防治板块热度不减,建工修复等多只个股涨停
日本福岛核污染水排海引发商场担忧,核污染防治概念股表现持续活跃。 8月28日,建工修复(300958.SZ)、中电环保(300172.SZ)、捷强配备(300875.SZ)20CM强势涨停,中广核技&a…...
Unity关键概念
Unity是一款跨平台的游戏引擎和开发工具,用于创建2D和3D游戏、交互式内容和应用程序。它提供了一个强大的开发环境,使开发者能够轻松地设计、开发和部署高质量的游戏和应用程序。 以下是Unity的几个关键概念: 游戏对象(Game Obj…...
JDK配置环境变量(超详细)
先安装JDK再配置环境变量! JDK可以简单理解为就是java,JDK包含了java项目运行所需要的运行环境JRE,编译运行java程序的java虚拟机JVM。 jdk-8u201-windows-x64安装包(jdk1.8): 提取码:19xv …...
抢先体验|乐鑫推出 ESP32-S3-BOX-3 新一代开源 AIoT 开发套件
乐鑫科技 (688018.SH) 非常高兴地宣布其开发套件阵容的最新成员 ESP32-S3-BOX-3。这款完全开源的 AIoT 应用开发套件搭载乐鑫高性能 ESP32-S3 AI SoC,旨在突破传统开发板,成为新一代开发工具的引领者。 【乐鑫新品抢先体验】ESP32-S3-BOX-3 新一代开源 A…...
Java 语言实现归并排序算法
【引言】 归并排序算法是一种高效且稳定的排序算法。它采用分治法的思想,将数组反复分割成两个子数组,直到每个子数组只有一个元素。然后将这些子数组逐个合并,最终得到排序完毕的数组。本文将使用Java语言实现归并排序算法,并详细…...
【Python编程】将同一种图片分类到同一文件夹中
一、数据结构如下: 二、编程工具:Jupyter-Notebook 三、代码: import os import cv2 import shutilpath0os.getcwd()\\apple\\RGB path1os.getcwd()\\apple\\tof_confidence path2os.getcwd()\\apple\\tof_depth path3os.getcwd()\\apple\\…...
Web安全测试(四):XML注入和代码注入
一、前言 结合内部资料,与安全渗透部门同事合力整理的安全测试相关资料教程,全方位涵盖电商、支付、金融、网络、数据库等领域的安全测试,覆盖Web、APP、中间件、内外网、Linux、Windows多个平台。学完后一定能成为安全大佬! 全部…...
如何通过内网穿透实现外部网络对Spring Boot服务端接口的HTTP监听和调试?
文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
